Advertisement

Chemical constituents from Ginkgo biloba leaves and their cytotoxicity activity

  • Penghua ShuEmail author
  • Mengyuan Sun
  • Junping Li
  • Lingxiang Zhang
  • Haichang Xu
  • Yueyue Lou
  • Zhiyu Ju
  • Xialan Wei
  • Wenming Wu
  • Na SunEmail author
Note
  • 64 Downloads

Abstract

One novel neoligan glucoside, Ginkgoside B (1), and one new glucose ester, 6-O-(4-hydroxyhydrocinnamoyl)-d-glucopyranose (2), along with nine known compounds (311) were isolated from the ethanol extract of Ginkgo biloba leaves. Their structures were elucidated by combination of spectroscopic analyses and alkaline methanolysis. The absolute configuration of compound 1 was determined by single-crystal X-ray diffraction. All the isolated compounds were evaluated for their cytotoxicity activities, and compound 11 exhibited IC50 values of 36.20 and 58.95 μM against 5637 and HeLa cell lines, respectively.

Keywords

Ginkgo biloba Alkaline methanolysis X-ray diffraction Cytotoxicity 

Notes

Acknowledgements

We are grateful to Lanxiang Dai for the collection of Ginkgo biloba leaves and Prof. Lin Yang at Lanzhou University of Technology for the authentication of the plant material. This work was financially supported by the National Natural Science Foundation of China (No. 21702178), Key Scientific Research Program in Universities of Henan Province (No. 18A350010), Science and Technology Project of Henan Province (No. 182102311108), and Excellent Young Key Teacher Funding Project of Xuchang University (No. 2017).

Supplementary material

11418_2019_1359_MOESM1_ESM.doc (2 mb)
Supplementary file1 (DOC 2006 kb)

References

  1. 1.
    Chinese Pharmacopeia Commission (2015) Pharmacopoeia of the People´s Republic of China (Volumn 1). China Medical Science Press, Beijing, pp 316–317Google Scholar
  2. 2.
    Liang T, Miyakawa T, Yang J, Ishikawa T, Tanokura M (2018) Quantification of terpene trilactones in Ginkgo biloba with a 1H NMR method. J Nat Med 72:793–797CrossRefGoogle Scholar
  3. 3.
    Chen X, Zeng L (2018) Ginkgo biloba extract 761 enhances 5-fluorouracil chemosensitivity in colorectal cancer cells through regulation of high mobility group-box 3 expression. Am J Transl Res 10:1773–1783Google Scholar
  4. 4.
    Dunnick JK, Nyska A (2013) The toxicity and pathology of selected dietary herbal medicines. Toxicol Pathol 41:374–386CrossRefGoogle Scholar
  5. 5.
    Wu Z, Lai Y, Zhou L, Wu Y, Zhu H, Hu Z, Yang J, Zhang J, Wang J, Luo Z, Xue Y, Zhang Y (2016) Enantiomeric lignans and neolignans from phyllanthus glaucus: Enantioseparation and their absolute configurations. Sci Rep 6:24809CrossRefGoogle Scholar
  6. 6.
    Nakanishi T, Iida N, Inatomi Y, Murata H, Inada A, Murata J, Lang FA, Iinuma M, Tanaka T (2004) Neolignan and flavonoid glycosides in Juniperus communis var. depressa. Phytochemistry 65:207–213CrossRefGoogle Scholar
  7. 7.
    Su XD, Li W, Ma JY, Kim YH (2018) Chemical constituents from Epimediumkoreanum Nakai and their chemotaxonomic significance. Nat Prod Res 32:2347–2351CrossRefGoogle Scholar
  8. 8.
    Tsukamoto H, Hisada S, Nishibe S (1984) Lignans from bark of Fraxinus mandshurica var. japonica and F. japonica. Chem Pharm Bull 32:4482–4489CrossRefGoogle Scholar
  9. 9.
    Huang X, Zhou C, Li L, Li F, Lou L, Li D, Ikejima T, Peng Y, Song S (2013) The cytotoxicity of 8-O-4' neolignans from the seeds of Crataegus pinnatifida. Bioorg Med Chem Lett 23:5599–5604CrossRefGoogle Scholar
  10. 10.
    Kikuzaki H, Hara S, Kawai Y, Nakatani N (1999) Antioxidative phenylpropanoids from berries of Pimenta dioica. Phytochemistry 52:1307–1312CrossRefGoogle Scholar
  11. 11.
    Zhang J, Shi X, Ma Q, He F, Fan B, Wang D, Liu D (2011) Chemical constituents from pine needles of Cedrus deodara. Chem Nat Compd 47:272–274CrossRefGoogle Scholar
  12. 12.
    Shu P, Wei X, Xue Y, Li W, Zhang J, Xiang M, Zhang M, Luo Z, Li Y, Yao G, Zhang Y (2013) Wilsonols A-L, megastigmane sesquiterpenoids from the leaves of Cinnamomum wilsonii. J Nat Prod 76:1303–1312CrossRefGoogle Scholar
  13. 13.
    Zheng Q, Xu Z, Sun X, Yao W, Sun H, Cheng CHK, Zhao Y (2003) Eudesmane and megastigmane glucosides from Laggera alata. Phytochemistry 63:835–839CrossRefGoogle Scholar
  14. 14.
    Zhou W, Oh J, Lee W, Kwak S, Li W, Chittiboyina AG, Ferreira D, Hamann MT, Lee SH, Bae JS, Na MK (2014) The first cyclomegastigmane rhododendroside A from Rhododendron brachycarpum alleviates HMGB1-induced sepsis. Biochim Biophys Acta Gen Subject 1840:2042–2049CrossRefGoogle Scholar
  15. 15.
    Vanzetti BL (1929) The principal components of the gum (resin) of olive-tree wood. Olivil and its derivatives. Gazz Chim Ital 59:373–378Google Scholar
  16. 16.
    Yeo H, Chin YW, Park SY, Kim J (2004) Lignans of Rosa multiflora roots. Arch Pharm Res 27:287–290CrossRefGoogle Scholar
  17. 17.
    Panza E, Tersigni M, Iorizzi M, Zollo F, Marino SD, Festa C, Napolitano M, Castello G, Ialenti A, Ianaro A (2011) Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation. J Nat Prod 74:228–233CrossRefGoogle Scholar
  18. 18.
    Shimomura H, Sashida Y, Adachi T (1988) Phenylpropanoid glucose esters from Prunus buergeriana. Phytochemistry 27:641–644CrossRefGoogle Scholar
  19. 19.
    Khoo LW, Kow ASF, Maulidiani M, Lee MT, Tan CP, Shaari K, Tham CL, Abas F (2018) Hematological, biochemical, histopathological and 1H-NMR metabolomics application in acute toxicity evaluation of Clinacanthus nutans water leaf extract. Molecules 23:2172CrossRefGoogle Scholar
  20. 20.
    Liu Z, Yoshihara A, Jenkinson SF, Wormald MR, Estévez RJ, Fleet GWJ, Izumori K (2016) Triacetonide of glucoheptonic acid in the scalable syntheses of d-gulose, 6-deoxy-d-gulose, l-glucose, 6-deoxy-l-glucose, and related sugars. Org Lett 18:4112–4115CrossRefGoogle Scholar
  21. 21.
    Peng C, Liu Y, Guo X, Liu W, Li Q, Zhao ZK (2018) Selective carboxylation of substituted phenols with engineered Escherichia coli whole-cells. Tetrahedron Lett 59:3810–3815CrossRefGoogle Scholar
  22. 22.
    van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringXuchang UniversityXuchangPeople’s Republic of China
  2. 2.School of Information EngineeringXuchang UniversityXuchangPeople’s Republic of China
  3. 3.Department of PharmacyJiangxi Provincial People’s HospitalNanchangPeople’s Republic of China

Personalised recommendations