Lanostane-type triterpenes from the sclerotium of Inonotus obliquus (Chaga mushrooms) as proproliferative agents on human follicle dermal papilla cells

  • Kazumi Sagayama
  • Naonobu Tanaka
  • Takatoshi Fukumoto
  • Yoshiki KashiwadaEmail author


Chaga mushrooms, the sclerotium of Inonotus obliquus, have been used in Mongolia as a traditional hair shampoo to maintain healthy hair. Bioassay-guided fractionations of the extract of Chaga mushrooms using a proliferation assay on human follicle dermal papilla cells (HFDPCs) gave five lanostane-type triterpenes (1–5), whose structures were identified by spectroscopic evidence. Among these, lanosterol (1), inotodiol (3), lanost-8,24-diene-3β,21-diol (4), and trametenolic acid (5) demonstrated proproliferative effects on HFDPCs more potent than minoxidil, an anti-alopecia agent, used as the positive control. The lanostane-type triterpenes (1, 3, 4, and 5) appeared to be potential candidates of new agents possibly used for hair-care with a stimulative effect on hair growth.


Inonotus obliquus Chaga mushroom Lanostane-type triterpene Hair growth Human follicle dermal papilla cell 



This study was partly supported by JSPS KAKENHI Grant numbers JP22406024 and JP26305003, and by SVENSON Co., Ltd., Tokyo, Japan.


  1. 1.
    Paus R (2000) Stress, hair growth control and the neuro-endocrine immune connection. Allergo J 9:611–620CrossRefGoogle Scholar
  2. 2.
    Botchkarev VA (2003) Stress and the hair follicle: exploring the connections. Am J Pathol 162:709–712CrossRefGoogle Scholar
  3. 3.
    Meidan VM, Touitou E (2001) Treatments for androgenetic alopecia and alopecia areata. Drugs 61:53–69CrossRefGoogle Scholar
  4. 4.
    Semwal BG, Agrawal KK, Singh K, Tandon S, Sharma S (2011) Alopecia switch to herbal medicine. J Pharm Res Opinion 1(4):101–104Google Scholar
  5. 5.
    Blumeyer A, Tosti A, Messenger A, Reygagne P, del Marmol V, Spuls PI, Trakatelli M, Finner A, Kiesewetter F, Trüeb R, Rzany B, Blume-Peytavi U (2011) Evidence based (S3) guideline for the treatment of androgenetic alopecia in women and in men. J Dtsch Dermatol Ges 9:S1–S57CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Han L, Chen SS, Guan J, Qu FZ, Zhao YQ (2016) Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis. Biomed Pharmacother 83:641–647CrossRefGoogle Scholar
  7. 7.
    Kawano M, Han J, Kchouk ME, Isoda H (2009) Hair growth regulation by the extract of aromatic plant Erica multiflora. J Nat Med 63:335–339CrossRefGoogle Scholar
  8. 8.
    Takahashi T, Kamiya T, Yokoo Y (1998) Proanthocyanidins from grape seeds promote proliferation of mouse hair follicle cells in vitro and convert hair cycle in vivo. Acta Derm Venereol (Stockh) 78:428–432CrossRefGoogle Scholar
  9. 9.
    Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, WallingfordGoogle Scholar
  10. 10.
    Shashkina MY, Shashkin PN, Sergeev AV (2006) Chemical and medicobiological properties of chaga (review). Pharma Chem J 40:560–568CrossRefGoogle Scholar
  11. 11.
    Zhong XH, Ren K, Lu SJ, Yang SY, Sun DZ (2009) Progress of research on Inonotus obliquus. Chin J Integr Med 15:156–160CrossRefGoogle Scholar
  12. 12.
    Ríos JL, Andújar I, Recio MC, Giner RM (2012) Lanostanoids from fungi: a group of potential anticancer compounds. J Nat Prod 75:2016–2044CrossRefGoogle Scholar
  13. 13.
    Ma L, Chen H, Dong P, Lu X (2013) Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem 139:503–508CrossRefGoogle Scholar
  14. 14.
    Ma L, Chen H, Zhu W, Wang Z (2013) Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus. Food Res Int 50:633–640CrossRefGoogle Scholar
  15. 15.
    Zheng W, Zhang M, Zhao Y, Wang Y, Miao K, Wei Z (2009) Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Bioresource Technol 100:1327–1335CrossRefGoogle Scholar
  16. 16.
    Akita A, Yi S, Yasukawa K (2015) Inhibitory effects of chaga (Inonotus obliquus) on tumor promotion in two-stage mouse skin carcinogenesis. J Pharm Nutr Sci 5:71–76CrossRefGoogle Scholar
  17. 17.
    Ichimura T, Watanabe O, Maruyama S (1998) Inhibition of HIV-1 protease by water-soluble lignin-like substance from an edible mushroom, Fuscoporia obliqua. Biosci Biotech Bioch 62:575–577CrossRefGoogle Scholar
  18. 18.
    Shapolova EG, Lomovskii OI, Kazachinskaya EI, Loktev VB, Teplyakova TV (2016) Antiviral activity of SIO2-polyphenol composites prepared mechanochemically from plant raw materials. Pharm Chem J 50:595–599CrossRefGoogle Scholar
  19. 19.
    Ichinohe T, Ainai A, Nakamura T, Akiyama Y, Maeyama J, Odagiri T, Tashiro M, Takahashi H, Sawa H, Tamura S, Chiba J, Kurata T, Sata T, Hasegawa H (2010) Induction of cross-protective immunity against influenza A virus H5N1 by an intranasal vaccine with extracts of mushroom mycelia. J Med Virol 82:128–137CrossRefGoogle Scholar
  20. 20.
    Geng Y, Lu ZM, Huang W, Xu HY, Shi JS, Xu ZH (2013) Bioassay-guided isolation of DPP-4 inhibitory fractions from extracts of submerged cultured of Inonotus obliquus. Molecules 18:1150–1161CrossRefGoogle Scholar
  21. 21.
    Wang J, Wang C, Li S, Li W, Yuan G, Pan Y, Chen H (2017) Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother 95:1669–1677CrossRefGoogle Scholar
  22. 22.
    Lu S, Tanaka N, Kawazoe K, Murakami K, Damdinjav D, Dorjbal E, Kashiwada Y (2016) Tetrahydroxanthones from Mongolian medicinal plant Gentianella amarella ssp. acuta. J Nat Med 70:780–788CrossRefGoogle Scholar
  23. 23.
    Tanaka N, Takekata M, Kurimoto S, Kawazoe K, Murakami K, Damdinjav D, Dorjbal E, Kashiwada Y (2015) Algiolide A, secoiridoid glucoside from Mongolian medicinal plant Gentiana algida. Tetrahedron Lett 56:817–819CrossRefGoogle Scholar
  24. 24.
    Yan ZF, Yang Y, Tian FH, Mao XX, Li Y, Li CT (2014) Inhibitory and acceleratory effects of Inonotus obliquus on tyrosinase activity and melanin formation in B16 melanoma cells. Evid Based Compl Alt Med 2014:259836Google Scholar
  25. 25.
    Kahlos K, Hiltunen R, Schantz MV (1984) 3β-Hydroxy-lanosta-8,24-dien-21-al, a new triterpene from Inonotus obliquus. Planta Med 50:197–198CrossRefGoogle Scholar
  26. 26.
    Kahlos K, Hiltunen R (1986) Two new oxygenated lanostane type triterpenes from Inonotus obliquus. Acta Pharm Fenn 95:71–76Google Scholar
  27. 27.
    Azzouni F, Godoy A, Li Y, Mohler J (2012) The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol 2012:530121CrossRefGoogle Scholar
  28. 28.
    Yamamura T, Masaki H, Sakon K, Tezuka T (1991) Inhibition of 5α-reductase by plant extracts. J Soc Cosmet Chem Jpn 25:117–121Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy 2019

Authors and Affiliations

  • Kazumi Sagayama
    • 1
  • Naonobu Tanaka
    • 1
    • 2
  • Takatoshi Fukumoto
    • 3
  • Yoshiki Kashiwada
    • 1
    Email author
  1. 1.Graduate School of Pharmaceutical SciencesTokushima UniversityTokushimaJapan
  2. 2.Graduate School of Technology, Industrial and Social SciencesTokushima UniversityTokushimaJapan
  3. 3.SVENSON Co., Ltd.TokyoJapan

Personalised recommendations