Journal of Natural Medicines

, Volume 73, Issue 1, pp 312–317 | Cite as

Application of a proton quantitative nuclear magnetic resonance spectroscopy method for the determination of actinodaphnine in Illigera aromatica and Illigera henryi

  • Jian-Wei DongEmail author
  • Xue-Jiao Li
  • Jun-You Shi
  • Kai-Quan Liu


Illigera aromatica S. Z. Huang et S. L. Mo and Illigera henryi W. W. Sm., belonging to the genus Illigera (Hernandiaceae), are used as herbal medicines for promoting blood circulation and treating tuberculosis. Actinodaphnine, the major bioactive alkaloid, plays an important role in the quality controls of the herbs. In the present study, a rapid, simple, accurate, and precise proton quantitative nuclear magnetic resonance (1H-qNMR) method was developed to determine the content of actinodaphnine in I. aromatica and I. henryi. DMSO-d6 enabled satisfactory separation of the signals to be integrated in 1H NMR spectrum. 1,4-Dinitrobenzene was selected as an internal standard. The limits of determination and quantitation were 0.005 and 0.038 mg/mL, respectively. This work implied that 1H-qNMR represents a feasible alternative to HPLC-based methods for quantitation of actinodaphnine in I. aromatica and I. henryi and is suitable for the quality control of I. aromatica and I. henryi.


Illigera aromatica Illigera henryi Actinodaphnine Proton nuclear magnetic resonance Quantitation 



This work was financially supported by a Yunnan Local Colleges Applied Basic Research Project (No. 2017FH001-092), a grant from the Science and Technology Project of Yunnan Provincial Department of Science and Technology (No. 2018FD081), a grant from the Shanghai Key Laboratory of Rare Earth Functional Materials, and a grant from the Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province.

Supplementary material

11418_2018_1264_MOESM1_ESM.docx (812 kb)
Supplementary material 1 (DOCX 812 kb)


  1. 1.
    Huang SZ (1985) A new species and some medicinal plants of Illigera BL. from Guangxi. Guihaia 5:17–20Google Scholar
  2. 2.
    Flora of China Editorial Committee (1982) Flora Reipublicae Popularis Sinicae. Science Press, BeijingGoogle Scholar
  3. 3.
    Mo S, Li Z, Ou Y, Wei S, Si X, Fan D (2006) Study on chemical components of essential oil in Illigera aromatica S.Z. Huang et S.L. Mo by GC-MS. Lishizhen Med Mater Med Res 17:2512–2513Google Scholar
  4. 4.
    Xie L, Li P, Gong Z, Ou Y (2011) Study on chemical consituents of Illigera aromatica S. Z. Huang et S. L. Mo. Contemp Med 17:31–32Google Scholar
  5. 5.
    Dong JW, Cai L, Li XJ, Wang JP, Mei RF, Ding ZT (2017) Monoterpene esters and aporphine alkaloids from Illigera aromatica with inhibitory effects against cholinesterase and NO production in LPS-stimulated RAW264.7 macrophages. Arch Pharm Res 40:1394–1402CrossRefGoogle Scholar
  6. 6.
    Dong JW, Cai L, Li XJ, Shu Y, Wang JP, Ding ZT (2018) A novel sesquiterpene derivative with a seven-membered B ring from Illigera aromatica. Nat Prod Res. Google Scholar
  7. 7.
    Dong J-W, Cai L, Li X-J, Mei R-F, Wang J-P, Luo P, Shu Y, Ding Z-T (2017) Fermentation of Illigera aromatica with Clonostachys rogersoniana producing novel cytotoxic menthane-type monoterpenoid dimers. RSC Adv 7:38956–38964CrossRefGoogle Scholar
  8. 8.
    Li X-J, Dong J-W, Cai L, Wang J-P, Yu N-X, Ding Z-T (2017) Illigerones A and B, two new long-chain secobutanolides from Illigera henryi W. W. Sm. Phytochem Lett 19:181–186CrossRefGoogle Scholar
  9. 9.
    Kongkiatpaiboon S, Duangdee N, Prateeptongkum S, Tayana N, Inthakusol W (2017) Simultaneous HPLC analysis of crebanine, dicentrine, stephanine and tetrahydropalmatine in Stephania venosa. Rev Bras Farmacogn 27:691–697CrossRefGoogle Scholar
  10. 10.
    Branch SK (2005) Guidelines from the International Conference on Harmonisation (ICH). J Pharm Biomed Anal 38:798–805CrossRefGoogle Scholar
  11. 11.
    Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K, Everett JR (2016) A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J 14:135–153CrossRefGoogle Scholar
  12. 12.
    Zhou J, Yin Y (2016) Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 141:6362–6373CrossRefGoogle Scholar
  13. 13.
    Pauli GF, Godecke T, Jaki BU, Lankin DC (2012) Quantitative 1H NMR. Development and potential of an analytical method: an update. J Nat Prod 75:834–851CrossRefGoogle Scholar
  14. 14.
    Huang F, Pan S, Pu Y, Ben H, Ragauskas AJ (2014) 19F NMR spectroscopy for the quantitative analysis of carbonyl groups in bio-oils. RSC Adv 4:17743CrossRefGoogle Scholar
  15. 15.
    Frank O, Kreissl JK, Daschner A, Hofmann T (2014) Accurate determination of reference materials and natural isolates by means of quantitative 1H NMR spectroscopy. J Agric Food Chem 62:2506–2515CrossRefGoogle Scholar
  16. 16.
    Yuan Y, Song Y, Jing W, Wang Y, Yang X, Liu D (2014) Simultaneous determination of caffeine, gallic acid, theanine, (−)-epigallocatechin and (−)-epigallocatechin-3-gallate in green tea using quantitative 1H-NMR spectroscopy. Anal Methods 6:907CrossRefGoogle Scholar
  17. 17.
    Tanaka R, Inagaki R, Sugimoto N, Akiyama H, Nagatsu A (2017) Application of a quantitative 1H-NMR (1H-qNMR) method for the determination of geniposidic acid and acteoside in Plantaginis semen. J Nat Med 71:315–320CrossRefGoogle Scholar
  18. 18.
    Tanaka R, Shibata H, Sugimoto N, Akiyama H, Nagatsu A (2016) Application of a quantitative 1H-NMR method for the determination of paeonol in Moutan cortex, Hachimijiogan and Keishibukuryogan. J Nat Med 70:797–802CrossRefGoogle Scholar
  19. 19.
    del Campo G, Berregi I, Caracena R, Zuriarrain J (2010) Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry. Talanta 81:367–371CrossRefGoogle Scholar
  20. 20.
    de Graaf RA, Behar KL (2003) Quantitative 1H NMR spectroscopy of blood plasma metabolites. Anal Chem 75:2100–2104CrossRefGoogle Scholar
  21. 21.
    Bussy U, Giraudeau P, Tea I, Boujtita M (2013) Understanding the degradation of electrochemically-generated reactive drug metabolites by quantitative NMR. Talanta 116:554–558CrossRefGoogle Scholar
  22. 22.
    Dong JW, Li XJ, Cai L, Shi JY, Li YF, Yang C, Li ZJ (2018) Simultaneous determination of alkaloids dicentrine and sinomenine in Stephania epigeae by 1H NMR spectroscopy. J Pharm Biomed Anal 160:330–335CrossRefGoogle Scholar
  23. 23.
    Ohtsuki T, Sato K, Abe Y, Sugimoto N, Akiyama H (2015) Quantification of acesulfame potassium in processed foods by quantitative 1H NMR. Talanta 131:712–718CrossRefGoogle Scholar
  24. 24.
    Emwas A-H, Roy R, McKay RT, Ryan D, Brennan L, Tenori L, Luchinat C, Gao X, Zeri AC, Gowda GAN, Raftery D, Steinbeck C, Salek RM (2016) Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis. J Proteome Res 15:360–373CrossRefGoogle Scholar
  25. 25.
    Emwas A-HM, Salek RM, Griffin JL, Merzaban J (2013) NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics 9:1048–1072CrossRefGoogle Scholar
  26. 26.
    Wallmeier J, Samol C, Ellmann L, Zacharias HU, Vogl FC, Garcia M, Dettmer K, Oefner PJ, Gronwald W, Investigators GS (2017) Quantification of metabolites by NMR spectroscopy in the presence of protein. J Proteome Res 16:1784–1796CrossRefGoogle Scholar
  27. 27.
    Beyer T, Schollmayer C, Holzgrabe U (2010) The role of solvents in the signal separation for quantitative 1H NMR spectroscopy. J Pharm Biomed Anal 52:51–58CrossRefGoogle Scholar
  28. 28.
    Dixon AM, Larive CK (1997) Modified pulsed-field gradient NMR experiments for improved selectivity in the measurement of diffusion coefficients in complex mixtures: application to the analysis of the Suwannee River fulvic acid. Anal Chem 69:2122–2128CrossRefGoogle Scholar
  29. 29.
    Holzgrabe U (2010) Quantitative NMR spectroscopy in pharmaceutical applications. Prog Nucl Magn Reson Spectrosc 57:229–240CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Environmental ScienceQujing Normal UniversityQujingPeople’s Republic of China

Personalised recommendations