Journal of Natural Medicines

, Volume 73, Issue 1, pp 289–296 | Cite as

Structure of constituents isolated from the bark of Cassipourea malosana and their cytotoxicity against a human ovarian cell line

  • Yumi NishiyamaEmail author
  • Yuki Noda
  • Noriyoshi Nakatani
  • Nobukazu Shitan
  • Tamotsu Sudo
  • Atsushi Kato
  • Patrick B. Chalo Mutiso


Three aromatic compounds, 2α,3α-epoxyflavan-5,7,4′-triol-(4β → 8)-afzelechin (1), 2β,3β-epoxyflavan-5,7,4′-triol-(4α → 8)-epiafzelechin (2), and methyl 4-ethoxy-2-hydroxy-6-propylbenzoate (3), as well as eight known compounds (411) were isolated from the bark of Cassipourea malosana (Rhizophoraceae). Their structures were determined on the basis of an analysis of spectroscopic data. The in vitro cytotoxic activities of these compounds against human ovarian cancer cell line TOV21G were evaluated. Most compounds showed little activity; however, the methyl derivatives of flavan dimers (1a and 2a) showed higher activity (IC50 value of 30.3 and 75.4 μM) than parent compounds 1 and 2.


Cassipourea malosana Rhizophoraceae Flavan dimer Ovarian cancer cell 


  1. 1.
    Kato A, Okada M, Hashimoto Y (1984) Occurrence of gerrardine in Cassipourea guianensis. J Nat Prod 47:706–707CrossRefGoogle Scholar
  2. 2.
    Kato A, Ichimaru M, Hashimoto Y, Mitsudera H (1989) Guinesine-A, -B and -C: new sulfur containing insecticidal alkaloids from Cassipourea guianensis. Tetrahedron Lett 30:3671–3674CrossRefGoogle Scholar
  3. 3.
    Kato A, Ichimaru M, Matsukawa M, Moriyasu M, Fukuoka N, Kishida K, Oget JO, Juma FD (1989) Studies on unused medicinal resources in Africa, occurrence of sulfur compounds in Cassipourea genus in Kenya. Africa Kenkyu 34:1–8CrossRefGoogle Scholar
  4. 4.
    Ichimaru M, Kato A, Hashimoto Y (2000) Cassipoureamide-A and -B: new sulfur-containing amides from stem wood of Cassipourea guianensis. J Nat Prod 63:1675–1676CrossRefGoogle Scholar
  5. 5.
    Turrill WB, Milne-Redhead E (1956) Flora of Tropical East Africa: Rhizophoraceae. Crown Agents, London, pp 1–19Google Scholar
  6. 6.
    Drewes SE, Taylor CW, Cunningham AB (1992) (+)-Afzelechin 3-rhamnoside from Cassipourea gerrardii. Phytochemistry 31:1073–1075CrossRefGoogle Scholar
  7. 7.
    Drewes SE, Taylor CW, Cunningham AB, Ferreira D, Steenkamp JA, Mouton CHL (1992) Epiafzelechin-(4β → 8, 2β → O → 7)-ent-afzelechin from Cassipourea gerrardii. Phytochemistry 31:2491–2494CrossRefGoogle Scholar
  8. 8.
    Drewes SE, Taylor CW (1994) Methylated A-type proanthocyanidins and related metabolites from Cassipourea gummiflua. Phytochemistry 37:551–555CrossRefGoogle Scholar
  9. 9.
    Chaturvedula VSP, Norris A, Miller JS, Ratovoson F, Andriantsiferana R, Rasamison VE, Kingston DGI (2006) Cytotoxic diterpenes from Cassipourea madagascariensis from the Madagascar rainforest. J Nat Prod 69:287–289CrossRefGoogle Scholar
  10. 10.
    Hou Y, Cao S, Brodie PJ, Miller JS, Birkinshaw C, Andrianjafy MN, Andriantsiferana R, Rasamison VE, TenDyke K, Shen Y, Suh EM, Kingston DGI (2010) Euphane triterpenoids of Cassipourea lanceolata from the Madagascar rainforest. Phytochemistry 71:669–674CrossRefGoogle Scholar
  11. 11.
    Goel M, Dureja P, Rani A, Uniyal PL, Laatsch H (2011) Isolation, characterization and antifungal activity of major constituents of the Himalayan lichen Parmelia reticulata Tayl. J Agric Food Chem 59:2299–2307CrossRefGoogle Scholar
  12. 12.
    Salakka A, Wähälä K (1999) Synthesis of α-methyldeoxybenzoins. J Chem Soc Perkin Trans 1:2601–2604CrossRefGoogle Scholar
  13. 13.
    McInnes AG, Walter JA, Smith DG (1976) Biosynthesis of bikaverin in Fusarium oxysporum use of 13C nuclear magnetic resonance with homonuclear 13C decoupling to locate adjacent 13C labels. J Antibiot 29(10):1050–1057CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Jia Z, Yang L (1994) Sinapyl alcohol derivatives and other constituents from Ligularia nelumbifolia. Phytochemistry 37:1149–1152CrossRefGoogle Scholar
  15. 15.
    Addae-Mensah I, Achenbach H, Thoithi GN, Waibel R, Mwangi JW (1992) Epoxychiromodine and other constituents of Croton megalocarpus. Phytochemistry 31:2055–2058CrossRefGoogle Scholar
  16. 16.
    Wang X, Yu W, Lou H (2005) Antifungal constituents from the Chinese moss Homalia trichomanoides. Chem Biodivers 2:139–145CrossRefGoogle Scholar
  17. 17.
    Piir EA, Morozevich GE, Drozdov FV, Timofeev VP, Misharin AY (2006) Δ5-7-Ketosterols with modified side chain: the synthesis and the effects on viability and cholesterol biosynthesis in Hep G2 cells. Russ J Bioorg Chem 32:497–503CrossRefGoogle Scholar
  18. 18.
    Pettit GR, Numata A, Cragg GM, Herald DL, Takada T, Iwamoto C, Riesen R, Schmidt JM, Doubek DL, Goswami A (2000) Isolation and structures of schleicherastatins 1-7 and schleicheols 1 and 2 from the teak forest medicinal tree Schleichera oleosa. J Nat Prod 63:72–78CrossRefGoogle Scholar
  19. 19.
    Kawamura F, Ohira T, Kikuchi Y (2004) Constituents from the root of Taxus cuspidata. J Wood Sci 50:548–551Google Scholar
  20. 20.
    Ma X, Liu Y, Shi Y (2007) Phenolic derivatives with free-radical-scavenging activities from Ixeridium gracile (DC.) Shih. Chem Biodivers 4:2172–2181CrossRefGoogle Scholar
  21. 21.
    Wang L, Lou G, Ma Z, Liu X (2011) Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chem 126:1081–1087CrossRefGoogle Scholar
  22. 22.
    Qiu L, Liang Y, Tang G, Yuan C, Zhang Y, Hao X, Hao X, He H (2013) Two new flavonoids, including one flavan dimer, from the root of Indigofera stachyodes. Phytochemistry Lett 6:368–371CrossRefGoogle Scholar
  23. 23.
    Yan X, Li W, Sun Y, Yang S, Lee S, Chen J, Jang H, Kim Y (2014) Identification and biological evaluation of flavonoids from the fruits of Prunus mume. Bioorg Med Chem Lett 24:1397–1402CrossRefGoogle Scholar
  24. 24.
    Burger JFW, Kolodziej H, Hemingway RW, Steynberg JP, Young DA, Ferreira D (1990) Oligomeric flavonoids. Part 15. Base-catalyxed pyran rearrangements of procyanidin B-2, and evidence for the oxidative transformation of B- to A-type procyanidins. Tetrahedron 46:5733–5740CrossRefGoogle Scholar
  25. 25.
    Hatano T, Yamashita A, Hashimoto T, Ito H, Kubo N, Yoshiyama M, Shimura S, Itoh Y, Okuda T, Yoshida T (1997) Flavan dimers with lipase inhibitory activity from Cassia nomame. Phytochemistry 46:893–900CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medicinal Cell BiologyKobe Pharmaceutical UniversityKobeJapan
  2. 2.Hyogo Cancer CenterAkashiJapan
  3. 3.Department of BotanyUniversity of NairobiNairobiKenya

Personalised recommendations