Journal of Natural Medicines

, Volume 73, Issue 1, pp 278–282 | Cite as

New depsidone and dichromone from the stems of Garcinia paucinervis with antiproliferative activity

  • CuiCui Jia
  • JingJing Xue
  • XinYu Li
  • DaHong Li
  • ZhanLin LiEmail author
  • HuiMing HuaEmail author


A new depsidone, paucinervin Q (1), a new dichromone, paucinervin R (2), and a known compound, paucinervin B (3), were isolated from the stems of Garcinia paucinervis by various chromatographic methods. Their structures were determined by analysis of spectroscopic data. The isolates were evaluated for their antiproliferative activity against three cancer cell lines HL-60, PC-3 and CaCo-2. Compound 1 showed significant inhibitory activities.


Garcinia paucinervis Depsidone Dichromone Cytotoxicity 



This study was financially supported by the National Natural Science Foundation of China (31570350), and the key laboratory basic research projects of Department of Education in Liaoning Province (LZ2014044).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

11418_2018_1247_MOESM1_ESM.doc (823 kb)
Supplementary material 1 (DOC 823 kb)


  1. 1.
    Semwal RB, Semwal DK, Vermaak I, Viljoen A (2015) A comprehensive scientific overview of Garcina cambogia. Fitoterapia 102:134–148CrossRefGoogle Scholar
  2. 2.
    Li DH, Li CX, Jia CC, Sun YT, Xue CM, Bai J, Hua HM, Liu XQ, Li ZL (2016) Xanthones from Garcinia paucinervis with in vitro anti-proliferative activity against HL-60 cells. Arch Pharm Res 39:172–177CrossRefGoogle Scholar
  3. 3.
    Liu B, Zhang XB, Bussmann RW, Hart RH, Li P, Bai YJ, Long CL (2017) Garcinia in southern China: ethnobotany, management, and niche modeling. Econ Bot 70:417–430Google Scholar
  4. 4.
    Jouda JB, Tamokou JD, Mbazoa CD, Clovis DM, Sarkar P, Bag PK, Wandji J (2016) Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut. BMC Complement Altern Med 16:462–470CrossRefGoogle Scholar
  5. 5.
    Fan YM, Yi P, Li Y, Yan C, Huang T, Gu W, Ma Y, Huang LJ, Zhang JX, Yang CL, Li Y, Yuan CM, Hao XJ (2015) Two unusual polycyclic polyprenylated acylphloroglucinols, including a pair of enantiomers from Garcinia multiflora. Org Lett 17:2066–2069CrossRefGoogle Scholar
  6. 6.
    Li P, Yue GGL, Kwok HF, Long CL, Lau CBS, Kennelly EJ (2017) Using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry-based chemometrics for the identification of anti-angiogenic biflavonoids from edible Garcinia species. J Agric Food Chem 65:8348–8355CrossRefGoogle Scholar
  7. 7.
    Richard JA, Pouwer RH, Chen DYK (2012) The chemistry of the polycyclic polyprenylated acylphloroglucinols. Angew Chem Int Ed 51:4536–4561CrossRefGoogle Scholar
  8. 8.
    Genovese S, Fiorito S, Taddeo VA, Epifano F (2016) Recent developments in the pharmacology of prenylated xanthones. Drug Discov Today 21:1814–1819CrossRefGoogle Scholar
  9. 9.
    Yang H, Figueroa M, To S, Baggett S, Jiang B, Basile MJ, Weinstein B, Kennelly EJ (2010) Benzophenones and biflavonoids from Garcinia livingstonei fruits. J Agric Food Chem 58:4749–4755CrossRefGoogle Scholar
  10. 10.
    Johnson OO, Zhao M, Gunn J, Santarsiero BD, Yin ZQ, Ayoola GA, Coker HAB, Che CT (2016) α-Glucosidase inhibitory prenylated anthranols from Harungana madagascariensis. J Nat Prod 79:224–229CrossRefGoogle Scholar
  11. 11.
    Mbwambo ZH, Kapingu MC, Moshi MJ, Machumi F, Apers S, Cos P, Ferreira D, Marais JPJ, Berghe DV, Maes L, Vlietinck A, Pieters L (2006) Antiparasitic activity of some xanthones and biflavonoids from the root bark of Garcinia livingstonei. J Nat Prod 69:369–372CrossRefGoogle Scholar
  12. 12.
    Lin YM, Anderson H, Flavin MT, Pai YHS (1997) In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod 60:884–888CrossRefGoogle Scholar
  13. 13.
    Xu WJ, Li RJ, Quasie O, Yang MH, Kong LY, Luo J (2016) Polyprenylated tetraoxygenated xanthones from the roots of Hypericum monogynum and their neuroprotective activities. J Nat Prod 79:1971–1981CrossRefGoogle Scholar
  14. 14.
    Stark TD, Salger M, Frank O, Balemba OB, Wakamatsu J, Hofmann T (2015) Antioxidative compounds from Garcinia buchananii stem bark. J Nat Prod 78:234–240CrossRefGoogle Scholar
  15. 15.
    Gao XM, Yu T, Lai FSF, Zhou Y, Liu X, Qiao CF, Song JZ, Chen SL, Luo KQ, Xu HX (2010) Identification and evaluation of apoptotic compounds from Garcinia paucinervis. Bioorg Med Chem 18:4957–4964CrossRefGoogle Scholar
  16. 16.
    Hu QF, Meng YL, Yao JH, Qin YH, Yang ZY, Zhao GL, Yang ZX, Gao XM, Li TF (2014) Flavonoids from Garcinia paucinervis and their biological activities. Chem Nat Compd 50:994–997CrossRefGoogle Scholar
  17. 17.
    Li P, Senthilkumar HA, Figueroa M, Wu SB, Fata JE, Kennelly EJ, Long C (2016) UPLC-QTOFMSE-guided dereplication of the endangered Chinese species Garcinia paucinervis to identify additional benzophenone derivatives. J Nat Prod 79:1619–1627CrossRefGoogle Scholar
  18. 18.
    Wu YP, Zhao W, Xia ZY, Kong GH, Lu XP, Hu QF, Gao XM (2013) Three novel xanthones from Garcinia paucinervis and their anti-TMV activity. Molecules 18:9663–9669CrossRefGoogle Scholar
  19. 19.
    Gao XM, Yu T, Lai FSF, Pu JX, Qiao CF, Zhou Y, Liu X, Song JZ, Luo KQ, Xu HX (2010) Novel polyisoprenylated benzophenone derivatives from Garcinia paucinervis. Tetrahedron Lett 51:2442–2446CrossRefGoogle Scholar
  20. 20.
    Li DH, Li CX, Jia CC, Sun YT, Xue CM, Bai J, Hua HM, Liu XQ, Li ZL (2016) Xanthones from Garcinia paucinervis with in vitro anti-proliferative activity against HL-60 cells. Arch Pharm Res 39:172–177CrossRefGoogle Scholar
  21. 21.
    Jia CC, Han T, Xu J, Li SG, Sun YT, Li DH, Li ZL, Hua HM (2017) A new biflavonoid and a new triterpene from the leaves of Garcinia paucinervis and their biological activities. J Nat Med 71:642–649CrossRefGoogle Scholar
  22. 22.
    Jia CC, Xue JJ, Gong C, Li XY, Li ZL, Hua HM (2018) Chiral resolution and anticancer effect of xanthones from Garcinia paucinervis. Fitoterapia 127:220–225CrossRefGoogle Scholar
  23. 23.
    Fan QF, Na Z, Hu HB, Xu YK, Tang T (2012) Chemical constituents from stem barks of Garcinia paucinervis. Chin Tradit Herb Drugs 43:436–439Google Scholar
  24. 24.
    Xu ST, Yao H, Hu M, Li DH, Zhu ZY, Xie WJ, Yao HQ, Wu L, Chen ZS, Xu JY (2017) 6,7-Seco-ent-kauranoids derived from oridonin as potential anticancer agents. J Nat Prod 80:2391–2398CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of EducationShenyang Pharmaceutical UniversityShenyangChina
  2. 2.School of Traditional Chinese Materia MedicaShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China

Personalised recommendations