Journal of Natural Medicines

, Volume 73, Issue 1, pp 67–75 | Cite as

Oenothein B, dimeric hydrolysable tannin inhibiting HCV invasion from Oenothera erythrosepala

  • Satoru TamuraEmail author
  • Gang-Ming Yang
  • Teruaki Koitabashi
  • Yoshiharu Matsuura
  • Yasumasa Komoda
  • Tomikazu Kawano
  • Nobutoshi Murakami
Original Paper


The envelope proteins of the hepatitis C virus (HCV), E1 and E2, have been revealed to be essential for invasion of HCV. Thus, we were engaged in the search for the inhibitors against HCV invasion through the assay system using the model virus expressing recombinant HCV envelopes, E1 and E2. Now, we disclosed dimeric hydrolysable tannin oenothein B (1) from MeOH extract of Oenothera erythrosepala as an active principle for inhibition of HCV invasion and its potency was almost the same as that of monomeric hydrolysable tannin, tellimagrandin I (2). Furthermore, by use of stereoselectively prepared 1-β- and 1-α-O-methyl tellimagrandin Is (4 and 5), the introduction of methyl moiety into 1-hydroxy group of 2 was clarified to result in slightly reduction of activity and β-isomer was revealed to exhibit a little stronger activity than α-one.


Hepatitis C virus Envelope protein E1 and E2 Oenothera erythrosepala Oenothein B Invasion inhibitor 



This work was supported by JSPS KAKENHI Grant number JP16790011, Grant-in-Aid for Young Scientists (B) and Research funds from San-Ei Gen F. F. I. Inc.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary material

11418_2018_1239_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1785 KB)


  1. 1.
    Homepage of World Health Organization (WHO);
  2. 2.
    Saito I, Miyamura T, Ohbayashi A, Harada H, Katayama T, Kikuchi S, Watanabe Y, Koi S, Onji M, Ohta Y, Choo Q-L, Houghton M, Kuo G (1990) Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proc Natl Acad Sci USA 87:6547–6549. CrossRefGoogle Scholar
  3. 3.
    Wakita T (2007) HCV research and anti-HCV drug discovery: toward the next generation. Adv Drug Deliv Rev 59:1196–1199. CrossRefGoogle Scholar
  4. 4.
    Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113. CrossRefGoogle Scholar
  5. 5.
    Matsuura Y, Tani H, Suzuki K, Kimura-Someya T, Suzuki R, Aizaki H, Ishii K, Moriishi K, Robison CS, Whitt MA, Miyamura T (2001) Characterization of Pseudotype VSV possessing HCV envelope proteins. Virology 286:263–275. CrossRefGoogle Scholar
  6. 6.
    Tamura S, Yang G-M, Yasueda N, Matsuura Y, Komoda Y, Murakami N (2010) Tellimagrandin I, HCV invasion inhibitor from Rosae Rugosae Flos. Bioorg Med Chem Lett 20:1598–1600. CrossRefGoogle Scholar
  7. 7.
    Oenothera erythrosepala was purchased from Maechu Co. LtdGoogle Scholar
  8. 8.
    Hatano T, Yasuhara T, Matsuda M, Yazaki K, Yoshida T, Okuda T (1990) Oenothein B, a dimeric, hydrolysable tannin with macrocyclic structure, and accompanying tannins from Oenothera erythrosepala. J Chem Soc Perkin Trans I:2735–2743. CrossRefGoogle Scholar
  9. 9.
    Yoshida T, Chou T, Shingu T, Okuda T (1995) Oenotheins D, F and G, hydrolysable tannin dimers from Oenothera laciniata. Phytochemistry 40:555–561. CrossRefGoogle Scholar
  10. 10.
    Nayeshiro K, Eugster CH (1989) Notiz über Ellagitannine und Flavonol-glycoside aus Rosenblüten. Helv Chim Acta 72:985–992. CrossRefGoogle Scholar
  11. 11.
    Feldman K, Ensel S, Minard R (1994) Ellagitannin chemistry. The first total chemical synthesis of an Ellagitannin natural product, Tellimagrandin I. J Am Chem Soc 116:1742–1745. CrossRefGoogle Scholar
  12. 12.
    Takeuchi H, Ueda Y, Furuta T, Kawabata T (2017) Total synthesis of Ellagitannins via sequential site-selective functionalization of unprotected D-glucose. Chem Pharm Bull 65:25–32. CrossRefGoogle Scholar
  13. 13.
    Yamada H, Ohara K, Ogura T (2013) Total Synthesis of Cercidinin A. Eur J Org Chem. Google Scholar
  14. 14.
    Yamaguchi S, Hirokane T, Yoshida T, Tanaka T, Hatano T, Ito H, Nonakai G, Yamada H (2013) Roxbin B is cuspinin: structural revision and total synthesis. J Org Chem 78:5410–5417. CrossRefGoogle Scholar
  15. 15.
    Michihata N, Kaneko Y, Kasai Y, Tanigawa K, Hirokane T, Higasa S, Yamada H (2013) High-yield total synthesis of (−)-strictinin through intramolecular coupling of gallates. J. Org. Chem. 78:4319–4328. CrossRefGoogle Scholar
  16. 16.
    Yamagauchi S, Ashikaga Y, Nishii K, Yamada H (2012) Total synthesis of the proposed structure of roxbin B; the nonidentical outcome. Org Lett 14:5928–5931. CrossRefGoogle Scholar
  17. 17.
    Kasai Y, Michihata N, Nishimura H, Hirokane T, Yamada H (2012) Total synthesis of (+)-davidiin. Angew Chem Int Ed 51:8026–8029. CrossRefGoogle Scholar
  18. 18.
    Hirokane T, Hirata Y, Ishimoto T, Nishii K, Yamada H (2014) A unified strategy for the synthesis of highly oxygenated diaryl ethers featured in ellagitannins. Nat Commun 5:3478. CrossRefGoogle Scholar
  19. 19.
    Asakura N, Fujimoto S, Michihata N, Nishii K, Imagawa H, Yamada H (2011) Synthesis of chiral and modifiable hexahydroxydiphenoyl compounds. J Org Chem 76:9711–9719. CrossRefGoogle Scholar
  20. 20.
    Bringmann G, Hartung T (1993) Atropo-enantioselective biaryl synthesis by stereocontrolled cleavage of configuratively labile lactone-bridged precursors using chiral H-nucleophiles. Tetrahedron 49:7891–7902. CrossRefGoogle Scholar
  21. 21.
    Corey EJ, Bakshi RK, Shibata S, Chen C-P, Singh VK (1987) A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. J Am Chem Soc 109:7925–7926. CrossRefGoogle Scholar
  22. 22.
    Shiina I, Kubota M, Ibuka R (2002) A novel and efficient macrolactonization of ω-hydroxycarboxylic acids using 2-methyl-6-nitrobenzoic anhydride (MNBA). Tetrahedron Lett 43:7535–7539. CrossRefGoogle Scholar
  23. 23.
    Gross GG, Hemingway RW, Yoshida T (1999) Plant polyphenols 2: chemistry, biology, pharmacology, ecology. Springer, New York, pp 614–618CrossRefGoogle Scholar
  24. 24.
    Zheng S, Laraia L, O’Connor CJ, Sorrell D, Tan YS, Xu Z, Venkitaraman AR, Wu W, Spring DR (2012) Synthesis and biological profiling of tellimagrandin I and analogues reveals that the medium ring can significantly modulate biological activity. Org Biomol Chem 10:2590–2593. CrossRefGoogle Scholar
  25. 25.
    Reddy BU, Mullick R, Kumar A, Sudha G, Srinivasan N, Das S (2014) Small molecule inhibitors of HCV replication from pomegranate. Sci Rep 4:5411. CrossRefGoogle Scholar
  26. 26.
    Arapitsas P, Menichetti S, Vincieri F, Romani A (2007) Hydrolyzable tannins with the hexahydroxydiphenoyl unit and the m-depsidic link: HPLC-DAD-MS identification and model synthesis. J Agric Food Chem 55:48–55. CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
  2. 2.School of PharmacyIwate Medical UniversityIwateJapan
  3. 3.Research Center for Emerging Infectious Diseases, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan

Personalised recommendations