Advertisement

Journal of Natural Medicines

, Volume 72, Issue 3, pp 768–773 | Cite as

Two flavonol glycosides from Liparis bootanensis

  • Shuai Huang
  • Run Wu
  • Feng Gao
  • Chunying Li
  • Xianli ZhouEmail author
Note

Abstract

Two new flavonol glycosides, bootanenside I and II (1 and 2), along with ten known compounds (312), were isolated from whole plant of Liparis bootanensis Griff. Their structures were elucidated on the basis of extensive spectroscopic analyses, including high-resolution electrospray-ionization mass spectrometry (HR–ESIMS) and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR). The cytotoxicity of the compounds was investigated against HCT116 human cancer cell line, revealing that none of them possessed considerable cytotoxic activity. Bioassays of the new metabolites showed that compounds 1 and 2 displayed moderate in vitro antiinflammatory activity by inhibiting expression of inducible nitric oxide synthase (iNOS) protein in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells.

Keywords

Orchidaceae Liparis bootanensis Griff. Flavonol glycosides Bootanensides Antiinflammatory 

Notes

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (81402803), project of Science and Technology Bureau of Chengdu (2015-HM01-00041-SF), and US National Institutes of Health (R01 HL128647 to C.L.).

Compliance with ethical standards

Conflict of interest

All the authors have no conflicts of interest to declare.

Supplementary material

11418_2018_1189_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1903 kb): 1D and 2D NMR, IR, and HR–ESIMS spectra for compounds 1 and 2

References

  1. 1.
    Chen SC, Ormerod P, Wood JJ (2009) Orchidaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, Vol 25. Science Press, Beijing, and Missouri Botanical Garden Press, St., pp 211–228Google Scholar
  2. 2.
    Nishikawa K, Hirata Y (1967) Chemotaxonomical alkaloid studies. I. Structure of nervosine. Tetrahedron Lett 8:2591–2596CrossRefGoogle Scholar
  3. 3.
    Nishikawa K, Hirata Y (1968) Chemotaxonomical alkaloid studies. 3. Further studies of Liparis alkaloids. Tetrahedron Lett 9:6289–6291CrossRefGoogle Scholar
  4. 4.
    Huang S, Zhou XL, Wang CJ, Wang HY, Wang YS, Shan LH, Weng J (2013) New nervogenic acid derivatives from Liparis nervosa. Planta Med 79:281–287CrossRefGoogle Scholar
  5. 5.
    Huang S, Zhou XL, Wang CJ, Wang YS, Xiao F, Shan LH, Guo ZY, Weng J (2013) Pyrrolizidine alkaloids from Liparis nervosa with inhibitory activities against LPS-induced NO production in RAW264.7 macrophages. Phytochemistry 93:154–161CrossRefGoogle Scholar
  6. 6.
    Huang S, Pan MF, Zhou XL, Zhou ZL, Wang CJ, Shan LH, Weng J (2013) Five new nervogenic acid derivatives from Liparis nervosa. Chin Chem Lett 24:734–736CrossRefGoogle Scholar
  7. 7.
    Huang S, Zhong DX, Shan LH, Zheng YZ, Zhang ZK, Bu YH, Ma HW, Zhou XL (2016) Three new pyrrolizidine alkaloids derivatives from Liparis nervosa. Chin Chem Lett 27:757–760CrossRefGoogle Scholar
  8. 8.
    Zhao Y, Hu S, Wang C, Zheng Y, Xu X (2013) Chemical constituents from Liparis nervosa. Chin Tradit Herb Drugs 44:2955–2959Google Scholar
  9. 9.
    Wu R, Huang S, Shan LH, Li SY, Wei Y, Zhou X (2016) A new flavone glycoside from Liparis bootanensis. Chin J Org Chem 36:2735–2738CrossRefGoogle Scholar
  10. 10.
    Hua YX, Liu SF, Yang ZQ (1999) The Chinese herbal, vol 12. Shanghai Science and Technology Publishing House, Shanghai, p 997Google Scholar
  11. 11.
    Yang J, Wang L, Zhou X, Yuan J, Zhang T, Liu F (2014) Chemical constituents from Melilotus officinalis. Tradit Herb Drugs 45:622–625Google Scholar
  12. 12.
    Li Y, Zhou Y, Chen G, Pei Y, Qin X (2014) Isolation and identification of phenols from Cynanchum paniculatum. J Shenyang Pharm Univ 31:444–447Google Scholar
  13. 13.
    Asahina H, Yoshikawa H, Shuto Y (1998) Effects of batatasin III and its analogs on gibberellic acid-dependent α-amylase induction in embryoless barley seeds and on cress growth. Biosci Biotechnol Biochem 62:1619–1620CrossRefGoogle Scholar
  14. 14.
    Reisch J, Bathory M, Novak I, Szendrei K (1970) Structure and biochemistry of natural phenanthrene derivatives. Herba Hung 9:43–48Google Scholar
  15. 15.
    Kozma A, Deden T, Carreras J, Wille C, Petuskova J, Rust J, Alcarazo M (2014) Coordination chemistry of cyclopropenylidene-stabilized phosphenium cations: synthesis and reactivity of Pd and Pt complexes. Chem Eur J 20:2208–2214CrossRefGoogle Scholar
  16. 16.
    Rethy B, Kovacs A, Zupko I, Forgo P, Vasas A, Falkay G, Hohmann J (2006) Cytotoxic phenanthrenes from the rhizomes of Tamus communis. Planta Med 72:767–770CrossRefGoogle Scholar
  17. 17.
    Wu YP, Liu WJ, Zhong WJ, Chen YJ, Chen DN, He F, Jiang L (2017) Phenolic compounds from the stems of Flickingeria fimbriata. Nat Prod Res 31:1518–1522CrossRefGoogle Scholar
  18. 18.
    Rao KV, Damu AG, Jayaprakasam B, Gunasekar D (1999) Flavonol glycosides from Cassia hirsuta. J Nat Prod 62:305–306CrossRefGoogle Scholar
  19. 19.
    Adhikari DP, Schutzki RE, DeWitt DL, Nair MG (2006) Effects of Amelanchier fruit isolates on cyclooxygenase enzymes and lipid peroxidation. Food Chem 97:56–56CrossRefGoogle Scholar
  20. 20.
    Wang X, Li L, Zhu R, Zhang J, Zhou J, Lou H (2017) Bibenzyl-based meroterpenoid enantiomers from the Chinese Liverwort Radula sumatrana. J Nat Prod 80:3143–3150CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Shuai Huang
    • 1
    • 2
  • Run Wu
    • 1
  • Feng Gao
    • 1
  • Chunying Li
    • 2
  • Xianli Zhou
    • 1
    Email author
  1. 1.Chemistry and Biodiversity Laboratory of the School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China
  2. 2.Center for Molecular and Translational Medicine, Institute of Biomedical SciencesGeorgia State UniversityAtlantaUSA

Personalised recommendations