Advertisement

Journal of Natural Medicines

, Volume 72, Issue 2, pp 481–492 | Cite as

Oxyresveratrol prevents murine H22 hepatocellular carcinoma growth and lymph node metastasis via inhibiting tumor angiogenesis and lymphangiogenesis

  • Yuanqi Liu
  • Wei Ren
  • Yang Bai
  • Lihong Wan
  • Xiaodong Sun
  • Yin Liu
  • Wenbi Xiong
  • Yuan-Yuan ZhangEmail author
  • Liming ZhouEmail author
Original Paper

Abstract

The purpose of this study was to investigate the effects and mechanisms of oxyresveratrol (Oxyres) on hepatocellular carcinoma (HCC) in vitro and in vivo. The MTT and Transwell assays were performed to investigate the effects of Oxyres on cell proliferation and migration of two HCC cell lines, QGY-7701 and SMMC-7721 cells. H22 cells were subcutaneously injected into hind foot pads of 70 male mice to establish a lymph node metastasis model. These mice were randomly divided into seven groups as follows, control group, HCC group, Oxyres 20 mg/kg group, Oxyres 40 mg/kg group, Oxyres 60 mg/kg group, Resveratrol (Res) group, and Adriamycin (ADM) group. Oxyres, Res, and ADM were intraperitoneally injected daily for consecutive 21 days. Tumors and popliteal lymph node were isolated and embedded for histology analysis. Expressions of CD31 and vascular endothelial growth factor receptor-3 (VEGFR3) in tumors were detected by immunohistocehmistry. Expressions of vascular endothelial growth factor C (VEGF-C) were measured by Western blot. Oxyres significantly inhibited the proliferation and migration of QGY-7701 and SMMC-7721 cells. Oxyres significantly inhibited tumor growth (p < 0.001) and metastasis to sentinel lymph nodes (70%) in a dose-dependent manner. Oxyres showed a similar inhibition rate as Res. Oxyres also significantly decreased micro-blood vessel density and micro-lymphatic vessel density in tumors (p < 0.05). Expressions of CD31, VEGFR3, and VEGF-C of tumors were also inhibited by Oxyres (p < 0.05). Oxyres exerts anti-tumor effects against HCC through inhibiting both angiogenesis and lymph node metastasis, which suggests Oxyres be a potential therapeutic agent.

Keywords

Oxyresveratrol Resveratrol H22 Lymph node metastasis 

Notes

Acknowledgements

We sincerely thank Dr. Yu Yu of the Research Laboratory of Pharmaceutical Chemistry and Biomaterials, Chongqing University of Medical Science for kindly giving us QGY-7701 cells.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of Sichuan University, Chengdu, China with the reference number: K2016040.

References

  1. 1.
    Liu Z, Wang J, Mao Y, Zou B, Fan X (2016) MicroRNA-101 suppresses migration and invasion via targeting vascular endothelial growth factor-C in hepatocellular carcinoma cells. Oncol Lett 11:433–438.  https://doi.org/10.3892/ol.2015.3832 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhuang PY, Shen J, Zhu XD, Lu L, Wang L, Tang ZY, Sun HC (2013) Prognostic roles of cross-talk between peritumoral hepatocytes and stromal cells in hepatocellular carcinoma involving peritumoral VEGF-C, VEGFR-1 and VEGFR-3. PLoS One 8:e64598.  https://doi.org/10.1371/journal.pone.0064598 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tong SW, Yang YX, Hu HD, An X, Ye F, Hu P, Ren H, Li SL, Zhang DZ (2012) Proteomic investigation of 5-fluorouracil resistance in a human hepatocellular carcinoma cell line. J Cell Biochem 113:1671–1680.  https://doi.org/10.1002/jcb.24036 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Broxterman HJ, Gotink KJ, Verheul HM (2009) Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Update 12:114–126.  https://doi.org/10.1016/j.drup.2009.07.001 CrossRefGoogle Scholar
  5. 5.
    Paul B, Masih I, Deopujari J, Charpentier C (1999) Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J Ethnopharmacol 68:71–76CrossRefGoogle Scholar
  6. 6.
    Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nwachukwu JC, Srinivasan S, Bruno NE, Parent AA, Hughes TS, Pollock JA, Gjyshi O, Cavett V, Nowak J, Garcia-Ordonez RD, Houtman R, Griffin PR, Kojetin DJ, Katzenellenbogen JA, Conkright MD, Nettles KW (2014) Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. Elife 3:e2057.  https://doi.org/10.7554/eLife.02057 CrossRefGoogle Scholar
  8. 8.
    Gambini J, Ingles M, Olaso G, Lopez-Grueso R, Bonet-Costa V, Gimeno-Mallench L, Mas-Bargues C, Abdelaziz KM, Gomez-Cabrera MC, Vina J, Borras C (2015) Properties of resveratrol: in vitro and in vivo studies about Metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev.  https://doi.org/10.1155/2015/837042 (837042) CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21:R209–R225.  https://doi.org/10.1530/ERC-13-0171 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Singh CK, Ndiaye MA, Ahmad N (2015) Resveratrol and cancer: challenges for clinical translation. Biochim Biophys Acta 1852:1178–1185.  https://doi.org/10.1016/j.bbadis.2014.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rajasekaran D, Elavarasan J, Sivalingam M, Ganapathy E, Kumar A, Kalpana K, Sakthisekaran D (2011) Resveratrol interferes with N-nitrosodiethylamine-induced hepatocellular carcinoma at early and advanced stages in male Wistar rats. Mol Med Rep 4:1211–1217.  https://doi.org/10.3892/mmr.2011.555 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sasivimolphan P, Lipipun V, Ritthidej G, Chitphet K, Yoshida Y, Daikoku T, Sritularak B, Likhitwitayawuid K, Pramyothin P, Hattori M, Shiraki K (2012) Microemulsion-based oxyresveratrol for topical treatment of herpes simplex virus (HSV) infection: physicochemical properties and efficacy in cutaneous HSV-1 infection in mice. AAPS Pharm Sci Tech 13:1266–1275.  https://doi.org/10.1208/s12249-012-9828-x CrossRefGoogle Scholar
  13. 13.
    Joung DK, Mun SH, Choi SH, Kang OH, Kim SB, Lee YS, Zhou T, Kong R, Choi JG, Shin DW, Kim YC, Lee DS, Kwon DY (2016) Antibacterial activity of oxyresveratrol against methicillin-resistant Staphylococcus aureus and its mechanism. Exp Ther Med 12:1579–1584.  https://doi.org/10.3892/etm.2016.3486 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TF (2003) Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9:64–76CrossRefGoogle Scholar
  15. 15.
    Chen YC, Tien YJ, Chen CH, Beltran FN, Amor EC, Wang RJ, Wu DJ, Mettling C, Lin YL, Yang WC (2013) Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complement Altern Med 13:45.  https://doi.org/10.1186/1472-6882-13-45 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Choi SW, Jang YJ, Lee YJ, Leem HH, Kim EO (2013) Analysis of functional constituents in Mulberry (Morus alba L.) twigs by different cultivars, producing areas, and heat processings. Prev Nutr Food Sci 18:256–262.  https://doi.org/10.3746/pnf.2013.18.4.256 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH, Moon JO (2003) In-vitro and in vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. J Pharm Pharmacol 55:1695–1700.  https://doi.org/10.1211/0022357022313 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Singh N, Agrawal M, Dore S (2013) Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 4:1151–1162.  https://doi.org/10.1021/cn400094w CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, Bei R (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16:9236–9282.  https://doi.org/10.3390/ijms16059236 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xiajing C, Yao X, Wei R, Ke X, Liming Z (2015) Study on tumor cell proliferation activity of oxyresveratrol in vitro and in vivo. Sichuan J Physiol Sci 37(4):174–176Google Scholar
  21. 21.
    Yue H, Yao X, Liming Z (2015) Study on the inhibitory effect of resveratrol on the proliferation of hepatoma cells in vivo and in vitro. Pharmacol Clin Chinese Mater Medica 31(3):34–37Google Scholar
  22. 22.
    Chen J, Yu Y, Li S, Ding W (2016) Resveratrol and Coumarin: novel agricultural antibacterial agent against Ralstonia solanacearum in vitro and in vivo. Molecules.  https://doi.org/10.3390/molecules21111501 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yu L, Sun ZJ, Wu SL, Pan CE (2003) Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer. World J Gastroenterol 9:2341–2343CrossRefGoogle Scholar
  24. 24.
    Ma X, Jin S, Zhang Y, Wan L, Zhao Y, Zhou L (2014) Inhibitory effects of nobiletin on hepatocellular carcinoma in vitro and in vivo. Phytother Res 28:560–567.  https://doi.org/10.1002/ptr.5024 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li L, Yang X, Yuan Y, Liu Q, Tang X, Chen Z, Yu Y (2006) Changes of gene expression of human hepatocellular carcinoma cell line QGY-7701 induced by Tetrazanbigen. Acta Academiae Medicinae Militaris Tertiae 28:151–153Google Scholar
  26. 26.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  27. 27.
    Li ZJ, Ying XJ, Chen HL, Ye PJ, Chen ZL, Li G, Jiang HF, Liu J, Zhou SZ (2013) Insulin-like growth factor-1 induces lymphangiogenesis and facilitates lymphatic metastasis in colorectal cancer. World J Gastroenterol 19:7788–7794.  https://doi.org/10.3748/wjg.v19.i43.7788 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Qingjun Z, Jing Z, Xiaoyan G, Dan Z, Chengbo Z (2015) The effect of basil polysaccharide on the survival period of murine H22 hepatocellular carcinoma lymph metastasis. J Shandong Univ Traditional Chinese Med 39(3):274–276Google Scholar
  29. 29.
    Jin Y, Wang S, Chen W, Zhang J, Wang B, Guan H, Tang J (2013) Annexin A7 suppresses lymph node metastasis of hepatocarcinoma cells in a mouse model. BMC Cancer 13:522.  https://doi.org/10.1186/1471-2407-13-522 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu MC, Liu L, Wang XR, Shuai WP, Hu Y, Han M, Gao JQ (2016) Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin enhance antitumor potency for H22 hepatocellular carcinoma both in vitro and in vivo. Int J Nanomedicine 11:1395–1412.  https://doi.org/10.2147/IJN.S96862 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dai W, Wang F, Lu J, Xia Y, He L, Chen K, Li J, Li S, Liu T, Zheng Y, Wang J, Lu W, Zhou Y, Yin Q, Abudumijiti H, Chen R, Zhang R, Zhou L, Zhou Z, Zhu R, Yang J, Wang C, Zhang H, Zhou Y, Xu L, Guo C (2015) By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget 6:13703–13717.  https://doi.org/10.18632/oncotarget.3800 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Arteaga O, Revuelta M, Uriguen L, Alvarez A, Montalvo H, Hilario E (2015) Pretreatment with resveratrol prevents neuronal injury and cognitive deficits induced by perinatal hypoxia-ischemia in rats. PLoS One 10:e142424.  https://doi.org/10.1371/journal.pone.0142424 CrossRefGoogle Scholar
  33. 33.
    Zunino SJ, Storms DH, Newman JW, Pedersen TL, Keen CL, Ducore JM (2012) Resveratrol given intraperitoneally does not inhibit the growth of high-risk t(4;11) acute lymphoblastic leukemia cells in a NOD/SCID mouse model. Int J Oncol 40:1277–1284.  https://doi.org/10.3892/ijo.2011.1316 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tu T, Budzinska MA, Maczurek AE, Cheng R, Di Bartolomeo A, Warner FJ, McCaughan GW, McLennan SV, Shackel NA (2014) Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Int J Mol Sci 15:9422–9458.  https://doi.org/10.3390/ijms15069422 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yokoo T, Patel AD, Lev-Cohain N, Singal AG, Yopp AC, Pedrosa I (2017) Extrahepatic metastasis risk of hepatocellular carcinoma based on alpha-fetoprotein and tumor staging parameters at cross-sectional imaging. Cancer Manag Res 9:503–511.  https://doi.org/10.2147/CMAR.S147097 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cacchi C, Arnholdt HM, Jahnig H, Anthuber M, Probst A, Oruzio DV, Markl B (2012) Clinical significance of lymph vessel density in T3 colorectal carcinoma. Int J Colorectal Dis 27:721–726.  https://doi.org/10.1007/s00384-011-1373-7 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li ZJ, Ying XJ, Chen HL, Ye PJ, Chen ZL, Li G, Jiang HF, Liu J, Zhou SZ (2013) Insulin-like growth factor-1 induces lymphangiogenesis and facilitates lymphatic metastasis in colorectal cancer. World J Gastroenterol 19:7788–7794.  https://doi.org/10.3748/wjg.v19.i43.7788 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Strijkers GJ, Kluza E, Van Tilborg GA, van der Schaft DW, Griffioen AW, Mulder WJ, Nicolay K (2010) Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis 13:161–173.  https://doi.org/10.1007/s10456-010-9165-1 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eo JS, Jeong JM (2016) Angiogenesis imaging using (68)Ga-RGD PET/CT: therapeutic implications. Semin Nucl Med 46:419–427.  https://doi.org/10.1053/j.semnuclmed.2016.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Han KY, Chang JH, Dugas-Ford J, Alexander JS, Azar DT (2014) Involvement of lysosomal degradation in VEGF-C-induced down-regulation of VEGFR-3. FEBS Lett 588:4357–4363.  https://doi.org/10.1016/j.febslet.2014.09.034 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhou J, Li SX, Wang W, Guo XY, Lu XY, Yan XP, Huang D, Wei BY, Cao L (2013) Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. Sci World J 2013:380692.  https://doi.org/10.1155/2013/380692 CrossRefGoogle Scholar
  42. 42.
    Chen JC, Chang YW, Hong CC, Yu YH, Su JL (2012) The role of the VEGF-C/VEGFRs axis in tumor progression and therapy. Int J Mol Sci 14:88–107.  https://doi.org/10.3390/ijms14010088 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Markowska AI, Jefferies KC, Panjwani N (2011) Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J Biol Chem 286:29913–29921.  https://doi.org/10.1074/jbc.M111.226423 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhang LQ, Xu XS, Wan Y, Song SD, Wang RT, Chen W, Wang ZX, Chang HL, Wei JC, Dong YF, Liu C (2015) Prognostic implications of estrogen receptor 1 and vascular endothelial growth factor a expression in primary gallbladder carcinoma. World J Gastroenterol 21:1243–1250.  https://doi.org/10.3748/wjg.v21.i4.1243 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wada H, Ura S, Kitaoka S, Satoh-Asahara N, Horie T, Ono K, Takaya T, Takanabe-Mori R, Akao M, Abe M, Morimoto T, Murayama T, Yokode M, Fujita M, Shimatsu A, Hasegawa K (2011) Distinct characteristics of circulating vascular endothelial growth factor-a and C levels in human subjects. PLoS One 6:e29351.  https://doi.org/10.1371/journal.pone.0029351 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Xie LX, Zhai TT, Yang LP, Yang E, Zhang XH, Chen JY, Zhang H (2013) Lymphangiogenesis and prognostic significance of vascular endothelial growth factor C in gastro-oesophageal junction adenocarcinoma. Int J Exp Pathol 94:39–46.  https://doi.org/10.1111/iep.12005 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lei Y, Li B, Tong S, Qi L, Hu X, Cui Y, Li Z, He W, Zu X, Wang Z, Chen M (2015) miR-101 suppresses vascular endothelial growth factor C that inhibits migration and invasion and enhances cisplatin chemosensitivity of bladder cancer cells. PLoS One 10:e117809.  https://doi.org/10.1371/journal.pone.0117809 CrossRefGoogle Scholar
  48. 48.
    He W, Tang B, Yang D, Li Y, Song W, Cheang T, Chen X, Li Y, Chen L, Zhan W, Li W, He Y (2013) Double-positive expression of high-mobility group box 1 and vascular endothelial growth factor C indicates a poorer prognosis in gastric cancer patients. World J Surg Oncol 11:161.  https://doi.org/10.1186/1477-7819-11-161 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7:121–127.  https://doi.org/10.1016/j.ccr.2005.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Paduch R (2016) The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol (Dordr) 39:397–410.  https://doi.org/10.1007/s13402-016-0281-9 CrossRefGoogle Scholar
  51. 51.
    Su JL, Yen CJ, Chen PS, Chuang SE, Hong CC, Kuo IH, Chen HY, Hung MC, Kuo ML (2007) The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer 96:541–545.  https://doi.org/10.1038/sj.bjc.6603487 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chien MH, Ku CC, Johansson G, Chen MW, Hsiao M, Su JL, Inoue H, Hua KT, Wei LH, Kuo ML (2009) Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. Carcinogenesis 30:2005–2013.  https://doi.org/10.1093/carcin/bgp244 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Yuanqi Liu
    • 1
  • Wei Ren
    • 2
    • 1
  • Yang Bai
    • 1
  • Lihong Wan
    • 1
  • Xiaodong Sun
    • 1
  • Yin Liu
    • 1
  • Wenbi Xiong
    • 1
  • Yuan-Yuan Zhang
    • 1
    Email author
  • Liming Zhou
    • 1
    Email author
  1. 1.Department of Pharmacology, West China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityChengduPeople’s Republic of China
  2. 2.Institute of Laboratory AnimalsSichuan Academy of Medical Sciences and Sichuan Provincial Peolpe’s HospitalChengduPeople’s Republic of China

Personalised recommendations