Advertisement

Anti-proliferative effect of auriculataoside A on B16 melanoma 4A5 cells by suppression of Cdc42–Rac1–RhoA signaling protein levels

  • Weicheng Wang
  • Souichi Nakashima
  • Seikou Nakamura
  • Yoshimi Oda
  • Hisashi Matsuda
Original Paper
  • 45 Downloads

Abstract

Auriculataoside A, an anthracenone dimer glycoside isolated from Cassia auriculata seed, shows anti-proliferative effects on cell line B16 melanoma 4A5 cells with an IC50 value of 0.82 μM. However, it shows no such effect on normal human dermal fibroblast (HDF) cells. To evaluate the mode of action underlying the anti-proliferative effect of auriculataoside A on cells, we examined changes in whole protein expression after treatment with auriculataoside A and found that the expression Cdc42, RhoA, and Rac1, which are Rho family GTPases, was reduced. Auriculataoside A also arrested the cell cycle at G1 phase. These results suggest that the suppression of the above proteins induced G1 arrest. In addition, auriculataoside A also suppressed the expression of β-catenin and c-Myc proteins. This action of auriculataoside A could be one of the mechanisms underlying its selective anti-proliferative effect on B16 melanoma cells.

Keywords

Auriculataoside A Cdc42 RhoA Rac1 β-Catenin c-Myc 

Notes

Acknowledgements

This research was supported in part by a Ministry of Education, Culture, Sports, Science and Technology (MEXT)-Supported Program for the Strategic Research Foundation at Private Universities 2015–2019.

Compliance with ethical standards

Conflict of interest

H. Matsuda and S. Nakashima are recipients of research grants from N.T.H Co., Ltd.

Supplementary material

11418_2018_1278_MOESM1_ESM.docx (199 kb)
Supplementary material 1 (docx 198 kb)

References

  1. 1.
    Wang C, Wu X, Chen M, Duan W, Sun L, Yan M, Zhang L (2007) Emodin induces apoptosis through caspase 3-dependent pathway in HK-2 cells. Toxicology 231:120–128CrossRefGoogle Scholar
  2. 2.
    Chen HC, Hsieh WT, Chang WC, Chung JG (2004) Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food Chem Toxicol 42:1251–1257CrossRefGoogle Scholar
  3. 3.
    Pecere T, Gazzola MV, Mucignat C, Parolin C, Vecchia FD, Cavaggioni A, Basso G, Diaspro A, Salvato B, Carli M, Giorgio Palù (2007) Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res 60:2800–2804Google Scholar
  4. 4.
    Wang W, Zhang Y, Nakashima S, Nakamura S, Wang T, Yoshikawa M, Matsuda H (2019) Inhibition of melanin production by anthracenone dimer glycosides isolated from Cassia auriculata seeds. J Nat Med. doi:  https://doi.org/10.1007/s11418-018-01276-2
  5. 5.
    Nakashima S, Oda Y, Nakamura S, Liu J, Onishi K, Kawabata M, Miki H, Himuro Y, Yoshikawa M, Matsuda H (2015) Inhibitors of melanogenesis in B16 melanoma 4A5 cells from flower buds of Lawsonia inermis (Henna). Bioorg Med Chem Lett 25:2701–2706Google Scholar
  6. 6.
    Matsuda H, Nakashima S, Oda Y, Nakamura S, Yoshikawa M (2009) Melanogenesis inhibitors from the rhizomes of Alpinia officinarum in B16 melanoma cells. Bioorg Med Chem 17:6048–6053CrossRefGoogle Scholar
  7. 7.
    Nakashima S, Oda Y, Kishimoto M, Uno M, Aoki M, Nakamura S, Tanaka H, Matsuda H (2018) Anti-invasive activity of Lawsonia inermis branch and its potential target protein. Nat Prod Commun 13:1337–1340Google Scholar
  8. 8.
    Nakashima S, Matsuda H, Oda Y, Nakamura S, Xu F, Yoshikawa M (2010) Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorg Med Chem 18:2337–2345CrossRefGoogle Scholar
  9. 9.
    Nakashima S, Matsuda H, Kurume A, Oda Y, Nakamura S, Yamashita M, Yoshikawa M (2010) Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells. Bioorg Med Chem Lett 20:2994–2997CrossRefGoogle Scholar
  10. 10.
    Jin J, Gong J, Yin T, Lu Y, Xia J, Xie Y, Di Y, He L, Guo J, Sun J, Noteborn MHM, Qu S (2011) PTD4-apoptin protein and dacarbazine show a synergistic antitumor effect on B16-F1 melanoma in vitro and in vivo. Eur J Pharmacol 654:17–25CrossRefGoogle Scholar
  11. 11.
    Li J, Yang K, Ke X, Du R, Zhang X, Zhang Q (2014) In vitro and in vivo antitumor efficacy of CLA-PTX on B16-F10 melanoma cells. J Chin Pharm Sci 23:46–53Google Scholar
  12. 12.
    Shenoy VS, Gude RP, Nikam Y, Murthy RSR (2017) In vitro cytotoxic potential of paclitaxel-encapsulated lipid-based drug delivery systems. Austin J Lung Cancer Res 2:1011Google Scholar
  13. 13.
    Liu M, Bi F, Zhou X, Zheng Y (2012) Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol 22:365–373CrossRefGoogle Scholar
  14. 14.
    Mackay DJG, Hall A (1998) Rho GTPases. J Bio Chem 273:20685–20688CrossRefGoogle Scholar
  15. 15.
    Smit MA, Maddalo G, Greig K, Raaijmakers LM, Possik PA, van Breukelen B, Cappadona S, Heck AJ, Altelaar AF, Peeper DS (2014) ROCK1 is a potential combinatorial drug target for BRAF mutant melanoma. Mol Syst Biol 10:772–773CrossRefGoogle Scholar
  16. 16.
    Coleman ML, Marshall CJ, Olson MF (2004) Ras and Rho GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 5:355–366CrossRefGoogle Scholar
  17. 17.
    Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Cell Dev Biol 21:247–269CrossRefGoogle Scholar
  18. 18.
    Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635CrossRefGoogle Scholar
  19. 19.
    Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. Nucl Dyn Cytoskel Signal 582:2093–2101Google Scholar
  20. 20.
    Sadok A, McCarthy A, Caldwell J, Collins I, Garrett MD, Yeo M, Hooper S, Sahai E, Kuemper S, Mardakheh FK, Marshall CJ (2015) Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res 75:2272–2284CrossRefGoogle Scholar
  21. 21.
    Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719CrossRefGoogle Scholar
  22. 22.
    Larue L, Delmas V (2006) The WNT/beta-catenin pathway in melanoma. Front Biosci 11:733–742CrossRefGoogle Scholar
  23. 23.
    Schlessinger K, Hall A, Tolwinski N (2009) Wnt signaling pathways meet Rho GTPases. Genes Dev 23:265–277CrossRefGoogle Scholar
  24. 24.
    Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24Google Scholar
  25. 25.
    Sinnberg T, Menzel M, Ewerth D, Sauer B, Schwarz M, Schaller M, Garbe C, Schittek B (2011) β-Catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PLoS ONE 6:e23429CrossRefGoogle Scholar
  26. 26.
    Baldus SE, Mönig SP, Huxel S, Landsberg S, Hanisch FG, Engelmann K, Schneider PM, Thiele J, Hölscher AH, Dienes HP (2004) MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin Cancer Res 10:2790–2796CrossRefGoogle Scholar
  27. 27.
    Sun QY, Schatten H (2006) Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 131:193–205CrossRefGoogle Scholar
  28. 28.
    Schmandke A, Strittmatter SM (2007) ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 13:454–469CrossRefGoogle Scholar
  29. 29.
    Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P, Munro J, Schröder E, Zhou J, Brunton VG, Barker N, Clevers H, Sansom OJ, Anderson KI, Weaver VM, Olson MF (2011) Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce interfollicular epidermal hyperplasia and tumor growth. Cancer Cell 19:776–791CrossRefGoogle Scholar
  30. 30.
    Strub T, Giuliano S, Ye T, Bonet C, Keime C, Kobi D, Gras SL, Cormont M, Ballotti R, Bertolotto C, Davidson I (2011) Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 30:2319–2332CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kyoto Pharmaceutical UniversityKyotoJapan
  2. 2.N.T.H Co., Ltd.TokyoJapan

Personalised recommendations