Advertisement

Journal of Natural Medicines

, Volume 72, Issue 2, pp 448–455 | Cite as

Lignosulfonic acid attenuates NF-κB activation and intestinal epithelial barrier dysfunction induced by TNF-α/IFN-γ in Caco-2 cells

  • Koji Matsuhisa
  • Akihiro WatariEmail author
  • Kazuki Iwamoto
  • Masuo Kondoh
  • Kiyohito YagiEmail author
Original Paper

Abstract

Lentinula edodes mycelia solid culture extract (MSCE) is used as a medical food ingredient and provides beneficial effects to patients with cancer and chronic type C hepatitis. Low molecular weight lignin (LM-lignin), which is an active component of MSCE, exhibits hepatoprotective, antitumor, antiviral, and immunomodulatory effects. In this study, we investigated the effect of LM-lignin/lignosulfonic acid on intestinal barrier function. Lignosulfonic acid enhanced transepithelial membrane electrical resistance in human intestinal Caco-2 cell monolayers. In Caco-2 cells treated with lignosulfonic acid, expression of claudin-2, which forms high conductive cation pores in tight junctions (TJs), was decreased. Lignosulfonic acid also attenuated the barrier dysfunction that is caused by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. TNF-α- and IFN-γ-induced activation of NF-κB, such as translocation of NF-κB p65 into the nucleus and induction of gene expression, was inhibited by lignosulfonic acid treatment. Furthermore, lignosulfonic acid decreased the TNF-α- and IFN-γ-induced increase in interleukin (IL)-1β and IL-6 expression in Caco-2 cells. These results suggest that lignosulfonic acid not only enhances TJ barrier function but also restores TJ barrier integrity impaired by inflammatory cytokines. Therefore, lignosulfonic acid may be beneficial for the treatment of inflammation-induced intestinal barrier dysfunction observed in inflammatory bowel disease.

Keywords

Lentinula edodes mycelia Low molecular weight lignin Lignosulfonic acid Tight junction (TJ) TNF-α/IFN-γ NF-κB Claudin 

Notes

Acknowledgements

We thank Ms. Shizuka Yamagishi for technical assistance. This work was supported by JSPS KAKENHI Grant Nos. 26860078 and 16K08370; by the Suzuken Memorial Foundation; by the Mishima Kaiun Memorial Foundation; by the Yokoyama Rinsho Yakuri Foundation; and by the Basic Science and Platform Technology Program for innovative Biological Medicine from AMED.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11418_2017_1167_MOESM1_ESM.pdf (13 kb)
Supplementary material 1 (PDF 12 kb)

References

  1. 1.
    Chang R (1996) Functional properties of edible mushrooms. Nutr Rev 54:S91–S93CrossRefGoogle Scholar
  2. 2.
    Chihara G (1992) Recent progress in immunopharmacology and therapeutic effects of polysaccharides. Dev Biol Stand 77:191–197PubMedPubMedCentralGoogle Scholar
  3. 3.
    Akamatsu S, Watanabe A, Tamesada M, Nakamura R, Hayashi S, Kodama D, Kawase M, Yagi K (2004) Hepatoprotective effect of extracts from Lentinus edodes mycelia on dimethylnitrosamine-induced liver injury. Biol Pharm Bull 27:1957–1960CrossRefGoogle Scholar
  4. 4.
    Watanabe A, Kobayashi M, Hayashi S, Kodama D, Isoda K, Kondoh M, Kawase M, Tamesada M, Yagi K (2006) Protection against d-galactosamine-induced acute liver injury by oral administration of extracts from Lentinus edodes mycelia. Biol Pharm Bull 29:1651–1654CrossRefGoogle Scholar
  5. 5.
    Itoh A, Isoda K, Kondoh M, Kawase M, Kobayashi M, Tamesada M, Yagi K (2009) Hepatoprotective effect of syringic acid and vanillic acid on concanavalin a-induced liver injury. Biol Pharm Bull 32:1215–1219CrossRefGoogle Scholar
  6. 6.
    Itoh A, Isoda K, Kondoh M, Kawase M, Watari A, Kobayashi M, Tamesada M, Yagi K (2010) Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol Pharm Bull 33:983–987CrossRefGoogle Scholar
  7. 7.
    Okuno K, Uno K (2011) Efficacy of orally administered Lentinula edodes mycelia extract for advanced gastrointestinal cancer patients undergoing cancer chemotherapy: a pilot study. Asian Pac J Cancer Prev 12:1671–1674PubMedPubMedCentralGoogle Scholar
  8. 8.
    Shen J, Tanida M, Fujisaki Y, Horii Y, Hashimoto K, Nagai K (2009) Effect of the culture extract of Lentinus edodes mycelia on splenic sympathetic activity and cancer cell proliferation. Auton Neurosci 145:50–54.  https://doi.org/10.1016/j.autneu.2008.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sarkar S, Koga J, Whitley RJ, Chatterjee S (1993) Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpes simplex virus type 1. Antivir Res 20:293–303CrossRefGoogle Scholar
  10. 10.
    Matsuhisa K, Yamane S, Okamoto T, Watari A, Kondoh M, Matsuura Y, Yagi K (2015) Anti-HCV effect of Lentinula edodes mycelia solid culture extracts and low-molecular-weight lignin. Biochem Biophys Res Commun 462:52–57.  https://doi.org/10.1016/j.bbrc.2015.04.104 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yamada T, Oinuma T, Niihashi M, Mitsumata M, Fujioka T, Hasegawa K, Nagaoka H, Itakura H (2002) Effects of Lentinus edodes mycelia on dietary-induced atherosclerotic involvement in rabbit aorta. J Atheroscler Thromb 9:149–156CrossRefGoogle Scholar
  12. 12.
    Tanaka K, Ishikawa S, Matsui Y, Tamesada M, Harashima N, Harada M (2011) Oral ingestion of Lentinula edodes mycelia extract inhibits B16 melanoma growth via mitigation of regulatory T cell-mediated immunosuppression. Cancer Sci 102:516–521.  https://doi.org/10.1111/j.1349-7006.2010.01841.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Suzuki H, Iiyama K, Yoshida O, Yamazaki S, Yamamoto N, Toda S (1990) Structural characterization of the immunoactive and antiviral water-solubilized lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). Agric Biol Chem 54:479–487PubMedPubMedCentralGoogle Scholar
  14. 14.
    Yoshioka Y, Kojima H, Tamura A, Tsuji K, Tamesada M, Yagi K, Murakami N (2012) Low-molecular-weight lignin-rich fraction in the extract of cultured Lentinula edodes mycelia attenuates carbon tetrachloride-induced toxicity in primary cultures of rat hepatocytes. J Nat Med 66:185–191.  https://doi.org/10.1007/s11418-011-0580-4 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaulmann A, Bohn T (2016) Bioactivity of polyphenols: preventive and adjuvant strategies toward reducing inflammatory bowel diseases—promises, perspectives, and pitfalls. Oxid Med Cell Longev 2016:9346470.  https://doi.org/10.1155/2016/9346470 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Blonski W, Buchner AM, Lichtenstein GR (2011) Inflammatory bowel disease therapy: current state-of-the-art. Curr Opin Gastroenterol 27:346–357.  https://doi.org/10.1097/MOG.0b013e328347aef3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hagan M, Cross RK (2015) Safety of vedolizumab in the treatment of Crohn’s disease and ulcerative colitis. Expert Opin Drug Saf 14:1473–1479.  https://doi.org/10.1517/14740338.2015.1063612 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809.  https://doi.org/10.1038/nri2653 CrossRefGoogle Scholar
  19. 19.
    Hering NA, Fromm M, Schulzke JD (2012) Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol 590:1035–1044.  https://doi.org/10.1113/jphysiol.2011.224568 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hasegawa Y, Kadota Y, Hasegawa C, Kawaminami S (2015) Lignosulfonic acid-induced inhibition of intestinal glucose absorption. J Nutr Sci Vitaminol (Tokyo) 61:449–454.  https://doi.org/10.3177/jnsv.61.449 CrossRefGoogle Scholar
  21. 21.
    Hasegawa Y, Nakagawa E, Kadota Y, Kawaminami S (2017) Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake. Asian-Australas J Anim Sci 30:111–118.  https://doi.org/10.5713/ajas.16.0253 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qiu M, Wang Q, Chu Y, Yuan Z, Song H, Chen Z, Wu Z (2012) Lignosulfonic acid exhibits broadly anti-HIV-1 activity—potential as a microbicide candidate for the prevention of HIV-1 sexual transmission. PLoS One 7:e35906.  https://doi.org/10.1371/journal.pone.0035906 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gordts SC, Ferir G, D’Huys T, Petrova MI, Lebeer S, Snoeck R, Andrei G, Schols D (2015) The low-cost compound lignosulfonic acid (LA) exhibits broad-spectrum anti-HIV and anti-HSV activity and has potential for microbicidal applications. PLoS One 10:e0131219.  https://doi.org/10.1371/journal.pone.0131219 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Watari A, Hasegawa M, Yagi K, Kondoh M (2016) Checkpoint kinase 1 activation enhances intestinal epithelial barrier function via regulation of claudin-5 expression. PLoS One 11:e0145631.  https://doi.org/10.1371/journal.pone.0145631 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Watari A, Sakamoto Y, Hisaie K, Iwamoto K, Fueta M, Yagi K, Kondoh M (2017) Rebeccamycin attenuates TNF-alpha-induced intestinal epithelial barrier dysfunction by inhibiting myosin light chain kinase production. Cell Physiol Biochem 41:1924–1934.  https://doi.org/10.1159/000472367 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Landy J, Ronde E, English N, Clark SK, Hart AL, Knight SC, Ciclitira PJ, Al-Hassi HO (2016) Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol 22:3117–3126.  https://doi.org/10.3748/wjg.v22.i11.3117 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Takehara M, Nishimura T, Mima S, Hoshino T, Mizushima T (2009) Effect of claudin expression on paracellular permeability, migration and invasion of colonic cancer cells. Biol Pharm Bull 32:825–831CrossRefGoogle Scholar
  28. 28.
    Lee SH (2015) Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res 13:11–18.  https://doi.org/10.5217/ir.2015.13.1.11 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286:G367–G376.  https://doi.org/10.1152/ajpgi.00173.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    He F, Peng J, Deng XL, Yang LF, Camara AD, Omran A, Wang GL, Wu LW, Zhang CL, Yin F (2012) Mechanisms of tumor necrosis factor-alpha-induced leaks in intestine epithelial barrier. Cytokine 59:264–272.  https://doi.org/10.1016/j.cyto.2012.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chen S, Zhu J, Chen G, Zuo S, Zhang J, Chen Z, Wang X, Li J, Liu Y, Wang P (2015) 1,25-Dihydroxyvitamin D3 preserves intestinal epithelial barrier function from TNF-alpha induced injury via suppression of NF-kB p65 mediated MLCK-P-MLC signaling pathway. Biochem Biophys Res Commun 460:873–878.  https://doi.org/10.1016/j.bbrc.2015.03.125 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chen SW, Zhu J, Zuo S, Zhang JL, Chen ZY, Chen GW, Wang X, Pan YS, Liu YC, Wang PY (2015) Protective effect of hydrogen sulfide on TNF-alpha and IFN-gamma-induced injury of intestinal epithelial barrier function in Caco-2 monolayers. Inflamm Res 64:789–797.  https://doi.org/10.1007/s00011-015-0862-5 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR (2006) Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 119:2095–2106.  https://doi.org/10.1242/jcs.02915 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Camilleri M, Madsen K, Spiller R, Van Meerveld BG, Verne GN (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 24:503–512.  https://doi.org/10.1111/j.1365-2982.2012.01921.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72.  https://doi.org/10.1136/gut.2006.094375 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Oshima T, Miwa H, Joh T (2008) Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol 23(Suppl 2):S146–S150.  https://doi.org/10.1111/j.1440-1746.2008.05405.x CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272CrossRefGoogle Scholar
  38. 38.
    Amasheh M, Fromm A, Krug SM, Amasheh S, Andres S, Zeitz M, Fromm M, Schulzke JD (2010) TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling. J Cell Sci 123:4145–4155.  https://doi.org/10.1242/jcs.070896 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Al-Sadi R, Guo S, Ye D, Rawat M, Ma TY (2016) TNF-alpha modulation of intestinal tight junction permeability is mediated by NIK/IKK-alpha axis activation of the canonical NF-kappaB pathway. Am J Pathol 186:1151–1165.  https://doi.org/10.1016/j.ajpath.2015.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Al-Sadi R, Guo S, Ye D, Ma TY (2013) TNF-alpha modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am J Pathol 183:1871–1884.  https://doi.org/10.1016/j.ajpath.2013.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Al-Sadi RM, Ma TY (2007) IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 178:4641–4649CrossRefGoogle Scholar
  42. 42.
    Suzuki T, Yoshinaga N, Tanabe S (2011) Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem 286:31263–31271.  https://doi.org/10.1074/jbc.M111.238147 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ina K, Kusugami K, Yamaguchi T, Imada A, Hosokawa T, Ohsuga M, Shinoda M, Ando T, Ito K, Yokoyama Y (1997) Mucosal interleukin-8 is involved in neutrophil migration and binding to extracellular matrix in inflammatory bowel disease. Am J Gastroenterol 92:1342–1346PubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Stress Protein Processing, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Laboratories of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan

Personalised recommendations