Journal of Natural Medicines

, Volume 72, Issue 1, pp 280–289 | Cite as

Dehydropropylpantothenamide isolated by a co-culture of Nocardia tenerifensis IFM 10554T in the presence of animal cells

  • Yasumasa Hara
  • Midori A. Arai
  • Kanae Sakai
  • Naoki Ishikawa
  • Tohru Gonoi
  • Takashi Yaguchi
  • Masami IshibashiEmail author
Original Paper


A new amide, named dehydropropylpantothenamide (1), was obtained by a co-culture of Nocardia tenerifensis IFM 10554T in the presence of the mouse macrophage-like cell line J774.1 in modified Czapek-Dox (mCD) medium. Compound 1 was synthesized from d-pantothenic acid calcium salt in 6 steps. The absolute configuration of natural compound 1 was determined by comparisons of the optical rotation and CD spectra of synthetic 1. In the present study, a new method for producing secondary metabolites was demonstrated using a “co-culture” in which the genus Nocardia was cultured in the presence of an animal cell line.


Actinomycetes Nocardia Co-culture Amide 



This study was supported by JSPS KAKENHI Grant Number 17H03992 and the Strategic Priority Research Promotion Program of Chiba University “Phytochemical Plant Molecular Sciences”.

Supplementary material

11418_2017_1161_MOESM1_ESM.docx (793 kb)
Supplementary material 1 (DOCX 792 kb)


  1. 1.
    Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695CrossRefGoogle Scholar
  2. 2.
    Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc Soc Exp Biol Med 55:66–69CrossRefGoogle Scholar
  3. 3.
    McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, Smith JW (1952) Ilotycin, a new antibiotic. Antibiot Chemother 2:281–283Google Scholar
  4. 4.
    Umezawa H, Ueda M, Maeda K, Yagishita K, Kondo S, Okami Y, Utahara R, Osato Y, Nitta K, Takeuchi T (1957) Production and isolation of a new antibiotic: kanamycin. J Antibiot 10:181–188PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRefGoogle Scholar
  6. 6.
    Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384CrossRefGoogle Scholar
  7. 7.
    Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627CrossRefGoogle Scholar
  8. 8.
    Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464CrossRefGoogle Scholar
  9. 9.
    Laureti L, Song L, Huanga S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci Unit States Am 108:6258–6263CrossRefGoogle Scholar
  10. 10.
    Onaka H, Mori Y, Igarashi Y, Furumai T (2011) Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol 77:400–406CrossRefGoogle Scholar
  11. 11.
    Hoshino S, Zhang L, Awakawa T, Wakimoto T, Onaka H, Abe I (2015) Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J Antibiot 68:342–344CrossRefGoogle Scholar
  12. 12.
    Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H (2015) 5-Alkyl-1,2,3,4-tetrahydroquinolines, new membrane-interacting lipophilic metabolites, produced by combined culture of Streptomyces nigrescens and Tsukamurella pulmonis. Org Lett 17:1918–1921CrossRefGoogle Scholar
  13. 13.
    Sakai K, Komaki H, Gonoi T (2015) Identification and Functional Analysis of the Nocardithiocin Gene Cluster in Nocardia pseudobrasiliensis. PLoS ONE 10:e0143264CrossRefGoogle Scholar
  14. 14.
    Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucl Acids Res 43:W237–243CrossRefGoogle Scholar
  15. 15.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  16. 16.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  17. 17.
    Hoshino Y, Chiba K, Ishino K, Fukai T, Igarashi Y, Yazawa K, Mikami Y, Ishikawa J (2011) Identification of Nocobactin NA biosynthetic gene clusters in Nocardia farcinica. J Bacteriol 193:441–448CrossRefGoogle Scholar
  18. 18.
    Beaman BL, Beaman L (1994) Nocardia species: host-parasite relationships. Clin Microbiol Rev 7:213–264CrossRefGoogle Scholar
  19. 19.
    Mukai A, Fukai T, Hoshino Y, Yazawa K, Harada K, Mikami Y (2009) Nocardithiocin, a novel thiopeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757. J Antibiot 62:613–619CrossRefGoogle Scholar
  20. 20.
    O̅mura S, Eda S, Funayama S, Komiyama K, Takahashi Y, Woodruff B (1989) Studies on a novel antitumor antibiotic, phenazinomycin: taxonomy, fermentation, isolation, and physicochemical and biological characteristics. J Antibiot 42:1037–1042CrossRefGoogle Scholar
  21. 21.
    Pridham TG, Anderson P, Foley C, Lindenfelser LA, Hessetime CW, Benedict RG (1956–1957) A selection of media for maintenance and taxonomic study of streptomycetes. Antibiot Annu 1956–1957:947–953Google Scholar
  22. 22.
    Sugie Y, Dekker KA, Hirai H, Ichiba T, Ishiguro M, Shiomi Y, Sugiura A, Brennan L, Duignan J, Huang LH, Sutcliffe J, Kojima Y (2001) CJ-15, 801, a novel antibiotic from a fungus, Seimatosporium sp. J Antibiot 54:1060–1065CrossRefGoogle Scholar
  23. 23.
    Nicolaou KC, Mathison CJN (2005) Synthesis of Imides, N-Acyl vinylogous carbamates and ureas, and nitriles by oxidation of amides and amines with Dess–Martin periodinane. Angew Chem Int Ed 44:5992–5997CrossRefGoogle Scholar
  24. 24.
    El-Tayeb O, Knight SG, Sih CJ (1964) Steroid epoxide cleavage by Cylindrocarpon radicicola. Biochim Biophys Acta 93:402–410CrossRefGoogle Scholar
  25. 25.
    Makino T, Katsuyama Y, Otomatsu T, Misawa N, Ohnishi Y (2014) Regio- and stereospecific hydroxylation of various steroids at the 16α position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3. Appl Environ Microbiol 80:1371–1379CrossRefGoogle Scholar
  26. 26.
    Choudhary MI, Sultan S, Khan MT, Yasin A, Shaheen F, Atta-ur-Rahman (2004) Biotransformation of (+)-androst-4-ene-3,17-dione. Nat Prod Res 18:529–535CrossRefGoogle Scholar
  27. 27.
    Le Pera A, Leggio A, Siciliano C, Di Gioia ML, Napoli A, Sindona G, Liguori A (2003) A straightforward chemical synthesis of 17-ketosteroids by cleavage of the C-17-dihydroxy acetone side chain in corticosteroids. Steroids 68:139–142CrossRefGoogle Scholar
  28. 28.
    Komura K, Ozaki A, Ieda N, Sugi Y (2008) FeCl3·6H2O as a versatile catalyst for the esterification of steroid alcohols with fatty acids. Synthesis 21:3407–3410Google Scholar
  29. 29.
    Sugawara H, Ohyama A, Mori H, Kurokawa K (2009) Microbial genome annotation pipeline (MiGAP) for diverse users. In: the 20th International Conference on Genome Informatics (GIW2009) Poster and Software Demonstrations (Yokohama):S001–1–2Google Scholar
  30. 30.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Yasumasa Hara
    • 1
  • Midori A. Arai
    • 1
  • Kanae Sakai
    • 2
  • Naoki Ishikawa
    • 1
  • Tohru Gonoi
    • 2
  • Takashi Yaguchi
    • 2
  • Masami Ishibashi
    • 1
    Email author
  1. 1.Graduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
  2. 2.Medical Mycology Research CenterChiba UniversityChibaJapan

Personalised recommendations