Advertisement

Journal of Natural Medicines

, Volume 72, Issue 1, pp 252–259 | Cite as

18β-glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway

  • Hongke Cai
  • Xi Chen
  • Jianbo ZhangEmail author
  • Jijian WangEmail author
Original Paper

Abstract

18β-glycyrrhetinic acid (18β-GA) is a bioactive component of licorice root which exerts pharmacological activities including anti-inflammatory, antiviral, anti-oxidative and anti-cancer effects. The current study further investigated the molecular mechanisms associated with the inhibitory effects of 18β-GA on tumor metastasis in human gastric cancer cells. The results indicated that 18β-GA significantly reduced invasion and migration activities and suppressed MMP-2 and 9 activities on SGC-7901cells in a dose-dependent manner. Further study showed 18β-GA upregulated E-cadherin expression but downregulated vimentin expression. The results also showed that 18β-GA inhibited ROS formation, PKC-α expression and the phosphorylation of ERK in a dose-dependent manner. In conclusion, this study revealed that 18β-GA inhibits migration and invasion via the ROS/PKC-α/ERK signaling pathway in gastric cancer cells. This suggests that 18β-GA has the potential to be used as an effective chemopreventive agent for the prevention of gastric cancer metastasis.

Keywords

18β-glycyrrhetinic acid Migration Invasion Gastric cancer ROS 

Notes

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest in this work.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):359–386Google Scholar
  2. 2.
    Kunz PL, Gubens M, Fisher GA, Ford JM, Lichtensztajn DY, Clarke CA (2012) Long-term survivors of gastric cancer: a California population-based study. J Clin Oncol 30(28):3507–3515Google Scholar
  3. 3.
    Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564Google Scholar
  4. 4.
    Yang M, Huang CZ (2015) Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J Gastroenterol 21(41):11673–11679PubMedPubMedCentralGoogle Scholar
  5. 5.
    Huang T, Kang W, Cheng AS, Yu J, To KF (2015) The emerging role of Slit-Robo pathway in gastric and other gastro intestinal cancers. BMC Cancer 15:950PubMedPubMedCentralGoogle Scholar
  6. 6.
    Sasaki T, Kuniyasu H (2014) Significance of AKT in gastric cancer. Int J Oncol 45(6):2187–2192Google Scholar
  7. 7.
    Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 16(11):1295–1322PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang Z, Li Y, Sarkar FH (2010) Signaling mechanism(s) of reactive oxygen species in epithelial–mesenchymal transition reminiscent of cancer stem cells in tumor progression. Curr Stem Cell Res Ther 5(1):74–80PubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun C, Wang Z, Zheng Q, Zhang H (2012) Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells. Phytomedicine 19(3–4):355–363Google Scholar
  10. 10.
    Chakraborty P, Chatterjee S, Ganguly A, Saha P, Adhikary A, Das T, Chatterjee M, Choudhuri SK (2012) Reprogramming of TAM toward proimmunogenic type through regulation of MAP kinases using a redox-active copper chelate. J Leukoc Biol 91(4):609–619Google Scholar
  11. 11.
    Wu WS, Wu JR, Hu CT (2008) Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 27(2):303–314Google Scholar
  12. 12.
    Lam CR, Tan C, Teo Z, Tay CY, Phua T, Wu YL, Cai PQ, Tan LP, Chen X, Zhu P, Tan NS (2013) Loss of TAK1 increases cell traction force in a ROS-dependent manner to drive epithelial–mesenchymal transition of cancer cells. Cell Death Dis 4:e848PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25(4):695–705Google Scholar
  14. 14.
    Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, Bielenberg J (2008) Antiviral effects of Glycyrrhiza species. Phytother Res 22(2):141–148Google Scholar
  15. 15.
    Huang QC, Wang MJ, Chen XM, Yu WL, Chu YL, He XH, Huang RY (2016) Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis? Oncotarget 7(2):1193–1202Google Scholar
  16. 16.
    Kong SZ, Chen HM, Yu XT, Zhang X, Feng XX, Kang XH, Li WJ, Huang N, Luo H, Su ZR (2015) The protective effect of 18beta-glycyrrhetinic acid against UV irradiation induced photoaging in mice. Exp Gerontol 61:147–155Google Scholar
  17. 17.
    Jayasooriya RG, Dilshara MG, Park SR, Choi YH, Hyun JW, Chang WY, Kim GY (2014) 18beta-glycyrrhetinic acid suppresses TNF-alpha induced matrix metalloproteinase-9 and vascular endothelial growth factor by suppressing the Akt-dependent NF-kappaB pathway. Toxicol In Vitro 28(5):751–758Google Scholar
  18. 18.
    Wang XF, Zhou QM, Lu YY, Zhang H, Huang S, Su SB (2015) Glycyrrhetinic acid potently suppresses breast cancer invasion and metastasis by impairing the p38 MAPK-AP1 signaling axis. Expert Opin Ther Targets 19(5):577–587Google Scholar
  19. 19.
    Gao Z, Kang X, Hu J, Ju Y, Xu C (2012) Induction of apoptosis with mitochondrial membrane depolarization by a glycyrrhetinic acid derivative in human leukemia K562 cells. Cytotechnology 64(4):421–428PubMedPubMedCentralGoogle Scholar
  20. 20.
    Geback T, Schulz MM, Koumoutsakos P, Detmar M (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46(4):265–274Google Scholar
  21. 21.
    Gao C, Dai FJ, Cui HW, Peng SH, He Y, Wang X, Yi ZF, Qiu WW (2014) Synthesis of novel heterocyclic ring-fused 18beta-glycyrrhetinic acid derivatives with antitumor and antimetastatic activity. Chem Biol Drug Des 84(2):223–233Google Scholar
  22. 22.
    Zhang Q, Cui C, Chen CQ, Hu XL, Liu YH, Fan YH, Meng WH, Zhao QC (2015) Anti-proliferative and pro-apoptotic activities of Alpinia oxyphylla on HepG2 cells through ROS-mediated signaling pathway. J Ethnopharmacol 169:99–108Google Scholar
  23. 23.
    Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG (2014) Protein kinase C and cancer: what we know and what we do not. Oncogene 33(45):5225–5237Google Scholar
  24. 24.
    Noh EM, Park YJ, Kim JM, Kim MS, Kim HR, Song HK, Hong OY, So HS, Yang SH, Kim JS, Park SH, Youn HJ, You YO, Choi KB, Kwon KB, Lee YR (2015) Fisetin regulates TPA-induced breast cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways. Eur J Pharmacol 764:79–86Google Scholar
  25. 25.
    Baquero P, Jimenez-Mora E, Santos A, Lasa M, Chiloeches A (2016) TGFbeta induces epithelial–mesenchymal transition of thyroid cancer cells by both the BRAF/MEK/ERK and Src/FAK pathways. Mol Carcinog 55(11):1639–1654Google Scholar
  26. 26.
    Zhao W, Lu M, Zhang Q (2015) Chloride intracellular channel 1 regulates migration and invasion in gastric cancer by triggering the ROS-mediated p38 MAPK signaling pathway. Mol Med Rep 12(6):8041–8047PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sharma G, Kar S, Palit S, Das PK (2012) 18beta-glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. J Cell Physiol 227(5):1923–1931Google Scholar
  28. 28.
    Lin KW, Huang AM, Hour TC, Yang SC, Pu YS, Lin CN (2011) 18beta-Glycyrrhetinic acid derivatives induced mitochondrial-mediated apoptosis through reactive oxygen species-mediated p53 activation in NTUB1 cells. Bioorg Med Chem 19(14):4274–4285Google Scholar
  29. 29.
    Ma T, Huang C, Meng X, Li X, Zhang Y, Ji S, Li J, Ye M, Liang H (2016) A potential adjuvant chemotherapeutics, 18beta-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2. Sci Rep 6:25396PubMedPubMedCentralGoogle Scholar
  30. 30.
    Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) Emt: 2016. Cell 166(1):21–45Google Scholar
  31. 31.
    Torzilli PA, Bourne JW, Cigler T, Vincent CT (2012) A new paradigm for mechanobiological mechanisms in tumor metastasis. Semin Cancer Biol 22(5–6):385–395PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196PubMedPubMedCentralGoogle Scholar
  33. 33.
    Serrano-Gomez SJ, Maziveyi M, Alahari SK (2016) Regulation of epithelial–mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 15:18PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kidd ME, Shumaker DK, Ridge KM (2014) The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol 50(1):1–6PubMedPubMedCentralGoogle Scholar
  35. 35.
    Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68(18):3033–3046PubMedPubMedCentralGoogle Scholar
  36. 36.
    Cichon MA, Radisky DC (2014) ROS-induced epithelial–mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. Oncotarget 5(9):2827–2838PubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhao Z, Zhao J, Xue J, Zhao X, Liu P (2016) Autophagy inhibition promotes epithelial–mesenchymal transition through ROS/HO-1 pathway in ovarian cancer cells. Am J Cancer Res 6(10):2162–2177PubMedPubMedCentralGoogle Scholar
  38. 38.
    Chen B, Liu J, Ho TT, Ding X, Mo YY (2016) ERK-mediated NF-kappaB activation through ASIC1 in response to acidosis. Oncogenesis 5(12):e279PubMedPubMedCentralGoogle Scholar
  39. 39.
    Chen Y, Zheng L, Liu J, Zhou Z, Cao X, Lv X, Chen F (2014) Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways. Int Immunopharmacol 21(2):447–455Google Scholar
  40. 40.
    Lin X, Zheng W, Liu J, Zhang Y, Qin H, Wu H, Xue B, Lu Y, Shen P (2013) Oxidative stress in malignant melanoma enhances tumor necrosis factor-alpha secretion of tumor-associated macrophages that promote cancer cell invasion. Antioxid Redox Signal 19(12):1337–1355Google Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of Gastrointestinal SurgerySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Center of Molecular Medicine and Cancer ResearchChongqing Medical UniversityChongqingChina

Personalised recommendations