Journal of Natural Medicines

, Volume 72, Issue 1, pp 96–105 | Cite as

The promotion of hair regrowth by topical application of a Perilla frutescens extract through increased cell viability and antagonism of testosterone and dihydrotestosterone

  • Jing-Jie Li
  • Zheng Li
  • Li-Juan Gu
  • Kang-Ju Choi
  • Dong-Seon Kim
  • Ho-Kyoung KimEmail author
  • Chang-Keun SungEmail author
Original Paper


This study investigated the potential hair regrowth effects associated with a plant extract of Perilla frutescens, which was selected due to its putative hair regrowth activity. Extracts were prepared from dried P. frutescens suspended in distilled water, where the resultant aqueous suspension was fractionated sequentially using hexane, ethyl acetate, n-butanol, and distilled water. We observed that the n-butanol fraction resulted in the highest hair regrowth activity. The n-butanol soluble fraction of P. frutescens extract (BFPE) was further separated using AB-8 macroporous resin and silica gel chromatography to obtain rosmarinic acid (RA), which demonstrated effective hair growth regeneration potential. BFPE also showed in vivo anti-androgenic activity following the use of a hair growth assay in testosterone-sensitive male C57Bl/6NCrSlc mice. Furthermore, the effects of cell viability promotion were investigated following an in vitro analysis in primary hair follicle fibroblast cells (PHFCs) treated with RA. The results suggested that RA was the active compound in P. frutescens that triggers hair growth, and RA could be a potential therapeutic agent for the promotion of hair growth and prevention of androgenetic alopecia (AGA).


Perilla frutescens Hair growth Rosmarinic acid Androgenetic alopecia (AGA) Testosterone and DHT Primary hair follicle fibroblast cell (PHFCs) 



This research was supported by project K16092, “Research for developing of classification criteria and management technique of Mibyeong” of the Korea Institute of Oriental Medicine.

Supplementary material

11418_2017_1116_MOESM1_ESM.jpg (294 kb)
Supplementary material 1 (JPEG 10 kb)
11418_2017_1116_MOESM2_ESM.jpg (10 kb)
Supplementary material 2 (JPEG 294 kb)


  1. 1.
    Alonso L, Fuchs E (2006) The hair cycle. J Cell Sci 119(3):391–393PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hubbard WH (1994) Clinical dermatology: a color guide to diagnosis and therapy. Arch Fam Med 3(1):23Google Scholar
  3. 3.
    Müller-Röver S, Foitzik K, Paus R, Handjiski B, van der Veen C, Eichmüller S, McKay IA, Stenn KS (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Investig Dermatol 117(1):3–15PubMedPubMedCentralGoogle Scholar
  4. 4.
    D’Amico AV, Roehrborn CG (2007) Effect of 1 mg/day finasteride on concentrations of serum prostate-specific antigen in men with androgenic alopecia: a randomised controlled trial. Lancet Oncol 8(1):21–25PubMedPubMedCentralGoogle Scholar
  5. 5.
    Rogers NE, Avram MR (2008) Medical treatments for male and female pattern hair loss. J Am Acad Dermatol 59(4):547–566PubMedPubMedCentralGoogle Scholar
  6. 6.
    Irwig MS, Kolukula S (2011) Persistent sexual side effects of finasteride for male pattern hair loss. J Sex Med 8(6):1747–1753PubMedPubMedCentralGoogle Scholar
  7. 7.
    Messerli FH (2002) Vasodilatory edema: a common side effect of antihypertensive therapy. Curr Cardiol Rep 4(6):479–482PubMedPubMedCentralGoogle Scholar
  8. 8.
    Shin H-S, Kim S-W (1994) Lipid composition of perilla seed. J Am Oil Chem Soc 71(6):619–622Google Scholar
  9. 9.
    Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa JI, Nishino H (2004) Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 68(1):85–90PubMedPubMedCentralGoogle Scholar
  10. 10.
    Makino T, Furuta Y, Wakushima H, Fujii H, Saito KI, Kano Y (2003) Anti-allergic effect of perilla frutescens and its active constituents. Phytother Res 17(3):240–243PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim M-K, Yoon TY, Choi B (2013) Asthma diagnosis and treatment—1006. Perillae semen abolished allergic asthmatic response in murine model. World Allergy Organ J 6(Suppl 1):P6PubMedPubMedCentralGoogle Scholar
  12. 12.
    Yim YK, Lee H, Hong KE, Kim YI, Ko SK, Kim JE, Lee SY, Park KS (2010) Anti-inflammatory and immune-regulatory effects of subcutaneous perillae fructus extract injections on ova-induced asthma in mice. Evid Based Complement Altern Med 7(1):79–86Google Scholar
  13. 13.
    Huang SS, Zheng RL (2006) Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett 239(2):271–280PubMedPubMedCentralGoogle Scholar
  14. 14.
    Maheswarappa NB, Subbaiah V, Muthupalani M, Yamagani PK, Mohan K, Keshapaga UR, Asokan SV, Kalappurakkal RC (2014) Antioxidant activity of carnosic acid and rosmarinic acid in raw and cooked ground chicken patties. J Sci Food Agric 94(2):273–279Google Scholar
  15. 15.
    Murata K, Takeshita F, Samukawa K, Tani T, Matsuda H (2012) Effects of ginseng rhizome and ginsenoside ro on testosterone 5α-reductase and hair re-growth in testosterone-treated mice. Phytother Res 26(1):48–53PubMedPubMedCentralGoogle Scholar
  16. 16.
    Philpott MP, Kealey T (2000) Cyclical changes in rat vibrissa follicles maintained in vitro. J Investig Dermatol 115(6):1152–1155PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ticli FK, Hage LIS, Cambraia RS, Pereira PS, Magro ÂJ, Fontes MRM, Stábeli RG, Giglio JR, França SC, Soares AM, Sampaio SV (2005) Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from cordia verbenacea (boraginaceae): antiserum action potentiation and molecular interaction. Toxicon 46(3):318–327PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kobayashi K, Rochat A, Barrandon Y (1993) Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proc Natl Acad Sci U S A 90(15):7391–7395PubMedPubMedCentralGoogle Scholar
  19. 19.
    Müller-Röver S, Foitzik K, Paus R, Handjiski B, van der Veen C, Eichmüller S, McKay IA, Stenn KS (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Investig Dermatol 117(1):3–15PubMedPubMedCentralGoogle Scholar
  20. 20.
    Plonka PM, Michalczyk D, Popik M, Handjiski B, Slominski A, Paus R (2004) Splenic eumelanin differs from hair eumelanin in c57bl/6 mice. Acta Biochim Pol 52(2):433–441Google Scholar
  21. 21.
    Philpott MP, Kealey T (2000) Cyclical changes in rat vibrissa follicles maintained in vitro. J Invest Dermatol 115(6):1152–1155Google Scholar
  22. 22.
    Murata K, Noguchi K, Kondo M, Onishi M, Watanabe N, Okamura K, Matsuda H (2012) Inhibitory activities of Puerariae Flos against testosterone 5α-reductase and its hair growth promotion activities. J Nat Med 66(1):158–165Google Scholar
  23. 23.
    Nusier MK, Bataineh HN, Daradkah HM (2007) Adverse effects of rosemary (Rosmarinus officinalis l.) on reproductive function in adult male rats. Exp Biol Med 232(6):809–813Google Scholar
  24. 24.
    Kimura Y, Okuda H, Okuda T, Hatano T, Arichi S (1987) Studies on the activities of tannins and related compounds, X. Effects of caffeetannins and related compounds on arachidonate metabolism in human polymorphonuclear leukocytes. J Nat Prod 50(3):392–399Google Scholar
  25. 25.
    Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The PPAR[alpha]-leukotriene B4 pathway to inflammation control. Nature 384(6604):39–43Google Scholar
  26. 26.
    Moreno S, Scheyer T, Romano CS, Vojnov AA (2006) Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Res 40(2):223–231Google Scholar
  27. 27.
    Takano H, Osakabe N, Sanbongi C, Yanagisawa R, Inoue KI, Yasuda A, Natsume M, Baba S, Ichiishi EI, Yoshikawa T (2004) Extract of Perilla frutescens enriched for rosmarinic acid, a polyphenolic phytochemical, inhibits seasonal allergic rhinoconjunctivitis in humans. Exp Biol Med (Maywood) 229(3):247–254Google Scholar
  28. 28.
    Moon D-O, Kim M-O, Lee J-D, Choi YH, Kim G-Y (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288(2):183–191PubMedPubMedCentralGoogle Scholar
  29. 29.
    Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T (2002) Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Radic Biol Med 33(6):798–806PubMedPubMedCentralGoogle Scholar
  30. 30.
    Blanco FJ, Ochs RL, Schwarz H, Lotz M (1995) Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146(1):75–85PubMedPubMedCentralGoogle Scholar
  31. 31.
    Lehmann V, Freudenberg MA, Galanos C (1987) Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med 165(3):657–663PubMedPubMedCentralGoogle Scholar
  32. 32.
    Mignon A, Rouquet N, Fabre M, Martin S, Pages JC, Dhainaut JF, Kahn A, Briand P, Joulin V (1999) LPS challenge in D-galactosamine-sensitized mice accounts for caspase-dependent fulminant hepatitis, not for septic shock. Am J Respir Crit Care Med 159(4):1308–1315PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kasumagic-Halilovic E, Prohic A, Cavaljuga S (2011) Tumor necrosis factor-alpha in patients with alopecia areata. Indian J Dermatol 56(5):494–496PubMedPubMedCentralGoogle Scholar
  34. 34.
    Lindsey SF, Tosti A (2013) Hair loss induced by tumor necrosis factor alpha inhibitors. J Clin Investig Dermatol 1(1):1–6Google Scholar
  35. 35.
    Lutf A, Hammoudeh M (2012) Weight gain and hair loss during anti-TNF therapy. Int J Rheumatol 2012:593039PubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society of Pharmacognosy and Springer Japan KK 2017

Authors and Affiliations

  • Jing-Jie Li
    • 1
  • Zheng Li
    • 2
  • Li-Juan Gu
    • 3
  • Kang-Ju Choi
    • 3
  • Dong-Seon Kim
    • 4
  • Ho-Kyoung Kim
    • 1
    Email author
  • Chang-Keun Sung
    • 3
    Email author
  1. 1.Mibyeong Research CenterKorea Institute of Oriental MedicineDaejeonRepublic of Korea
  2. 2.Intelligent Synthetic Biology Center, KAISTDaejeonRepublic of Korea
  3. 3.Department of Food Science and Technology, College of Agriculture and BiotechnologyChungnam National UniversityDaejeonRepublic of Korea
  4. 4.KM Convergence Research DivisionKorea Institute of Oriental MedicineDaejeonRepublic of Korea

Personalised recommendations