Constituents from Vitex negundo var. heterophylla and their inhibition of nitric oxide production
- 320 Downloads
- 2 Citations
Abstract
An iridoid glucoside, 10-p-hydroxybenzoyl-6β-hydroxyiridoid 1-O-β-d-(6′-O-p-hydroxybenzoyl)-glucopyranoside (1), and a phenol glucoside, 4-hydroxyphenethanol 3-O-β-d-(6′-O-p-hydroxybenzoyl)-glucopyranoside (2), along with nine known compounds (3–11) were isolated from the dried leaves of Vitex negundo var. heterophylla. Their structures were elucidated by extensive analysis of NMR spectra. All of the isolated compounds were evaluated for their inhibitory effects on nitric oxide production in RAW 264.7 macrophages. Compounds 2 and 3 exhibited obvious inhibitory effects on NO production with IC50 values of 30.76 and 49.89 μM, respectively. Molecular docking studies of compounds 2 and 3 with nitric oxide synthase (NOS) further confirmed the above results.
Keywords
Vitex negundo var. heterophylla Iridoid Phenol Nitric oxide Molecular dockingNotes
Acknowledgments
This work was financially supported by grants from Key Projects of the National Science and Technology Pillar Program (Grant No. 2012BAI30B02) and Fund of the Educational Department of Liaoning Province (Grant No. L2011177).
Supplementary material
References
- 1.Hu P, Li DH, Wang KB, Wang H, Wang ZH, Li ZL, Hua HM (2015) New phenolic compounds from Vitex negundo var. heterophylla and their antioxidant and NO inhibitory activities. J Funct Foods 19:174–181CrossRefGoogle Scholar
- 2.Chawla AS, Sharma AK, Handa SS, Dhar KL (1992) Chemical investigation and anti-inflammatory activity of Vitex negundo seeds. J Nat Prod 55:163–167CrossRefPubMedGoogle Scholar
- 3.Li SH, Zhang HJ, Qiu SX, Niu XM, Santarsiero BD, Mesecar AD, Fong HHS, Farnsworth NR, Sun HD (2002) Vitexlactam A, a novel labdane diterpene lactam from the fruits of Vitex agnus-castus. Tetrahedron Lett 43:5131–5134CrossRefGoogle Scholar
- 4.Ono M, Sawamura H, Ito Y, Mizuki K, Nohara T (2000) Diterpenoids from the fruits of Vitex trifolia. Phytochemistry 55:873–877CrossRefPubMedGoogle Scholar
- 5.Prasanna K, Karthikeyan V (2015) Preliminary phytochemical, total phenolics and flavonoid content analysis of Vitex negundo and Calatropis gigantea leaf ethanolic extracts. J Chem Pharm Res 7:282–285Google Scholar
- 6.Leitao SG, Monache FD (1998) 2″-O-caffeoylorientin from Vitex polygama. Phytochemistry 49:2167–2169CrossRefGoogle Scholar
- 7.Kawazoe K, Yutani A, Takaishi Y (1999) Arylnaphthalenes norlignans from Vitex rotundifolia. Phytochemistry 52:1657–1659CrossRefGoogle Scholar
- 8.Yamasaki T, Kawabata T, Masuoka C, Kinjo J, Ikeda T, Nohara T, Ono M (2008) Two new lignan glucosides from the fruit of Vitex cannabifolia. J Nat Med 62:47–51CrossRefPubMedGoogle Scholar
- 9.Dos Santos TC, Schripsema J, Monache FD, Suzana GL (2001) Iridoids from Vitex cymosa. J Br Chem Soc 12:763–766Google Scholar
- 10.Rabanes HR, Guidote AM Jr, Quirino JP (2014) Micellar electrokinetic chromatography of the constituents in Philippine lagundi (Vitex negundo) herbal products. Microchem J 112:153–158CrossRefGoogle Scholar
- 11.Sundaram R, Naresh R, Shanthi P, Sachdanandam P (2012) Antihyperglycemic effect of iridoid glucoside, isolated from the leaves of Vitex negundo in streptozotocin-induced diabetic rats with special reference to glycoprotein components. Phytomedicine 19:211–216CrossRefPubMedGoogle Scholar
- 12.Jangwan JS, Aquino RP, Mencherini T, Picerno P, Singh R (2015) Chemical constituents of ethanol extract and free radical scavenging activity of Vitex trifolia linn. Acta Chim Pharm Indica 5:1–7Google Scholar
- 13.Zheng CJ, Huang BK, Han T, Zhang QY, Zhang H, Rahman K, Qin LP (2009) Nitric oxide scavenging lignans from Vitex negundo seeds. J Nat Prod 72:1627–1630CrossRefPubMedGoogle Scholar
- 14.Rosa SIG, Rios-Santos F, Balogun SO, Martins D (2016) Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine 23:9–17CrossRefPubMedGoogle Scholar
- 15.Lee H, Jung KH, Lee H, Park S, Choi W, Bae H (2015) Casticin, an active compound isolated from Vitex fructus, ameliorates the cigarette smoke-induced acute lung inflammatory response in a murine model. Int Immunopharmacol 28:1097–1101CrossRefPubMedGoogle Scholar
- 16.Huang HC, Chang TY, Chang LZ, Wang HF, Yih KH, Hsieh WY, Chang TM (2012) Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of Vitex negundo Linn and chemical composition analysis by GC-MS. Molecules 17:3902–3916CrossRefPubMedGoogle Scholar
- 17.Zheng CJ, Huang BK, Han T, Zhang QY, Zhang H, Rahman K, Qin LP (2010) Antinociceptive activities of the liposoluble fraction from Vitex negundo seeds. Pharm Biol 48:651–658CrossRefPubMedGoogle Scholar
- 18.Kulkarni LA (2011) Pharmacological review on Vitex trifolia Linn. (Verbaeaceae). Pharmacologyonline 3:858–863Google Scholar
- 19.Nie XF, Yu LL, Tao Y, Huang J, Ding LQ, Feng XC, Jiang MM, Zheng L, Chen LX, Qiu F (2016) Two new lignans from the aerial part of Vitex negundo. J Asian Nat Prod Res. doi: 10.1080/10286020.2016.1142975 PubMedGoogle Scholar
- 20.Ling TJ, Ling WW, Chen YJ, Wan XC, Xia T, Du XF, Zhang ZZ (2010) Antiseptic activity and phenolic constituents of the aerial parts of Vitex negundo var. cannabifolia. Molecules 15:8469–8477CrossRefPubMedGoogle Scholar
- 21.Ono M, Eguchi K, Konoshita M, Furusawa C, Sakamoto J (2011) A new diterpenoid glucoside and two new diterpenoids from the fruit of Vitex agnus-castus. Chem Pharm Bull 59:392–396CrossRefPubMedGoogle Scholar
- 22.Ono M, Yamamoto M, Yanaka T, Ito Y, Nohara T (2001) Ten new labdane-type diterpenes from the fruit of Vitex rotundifolia. Chem Pharm Bull 49:82–86CrossRefPubMedGoogle Scholar
- 23.Zheng CJ, Huang BK, Wang Y, Ye Q, Han T, Zhang QY, Zhang H, Qin LP (2010) Anti-inflammatory diterpenes from the seeds of Vitex negundo. Bioorg Med Chem 18:175–181CrossRefPubMedGoogle Scholar
- 24.Jiang B, Han WL, Zhang QW, Zhang XQ, Ye WC (2012) Chemical constituents from the aerial roots of Ficus microcarpa. J Chin Med Mater 35:904–908Google Scholar
- 25.Xiao Y, Wang LB, Jin G, Sun R, Hu X, Yang CJ (2012) Studies on phenolic acid constituents of Acanthopanax sessiliflorus fruits. Chin J Med Chem 22:223–226Google Scholar
- 26.Peng DQ, Gao J, Guo XM, Wang JL, Zhang SJ (2014) Chemical constituents from roots of Taraxacum mongolicum. Chin Tradit Patent Med 36:1462–1466Google Scholar
- 27.Zhang SJ, Wang D, Xu C, Wang JL, Zhao M (2014) Chemical constituents from roots of Ixeris chinensis. Chin J Chin Mater Med 39:3089–3093Google Scholar
- 28.Zhao Y, Liang GX, Wang CF, He L (2012) Chemical constituents from Sibiraea angustata. J Beijing Normal Univ 48:621–625Google Scholar
- 29.Dutta PK, Chowdhury US, Chakravarty AK, Achari B, Pakrashi SC (1983) Studies on Indian medicinal plants-part LXXV. Nishindaside, a novel iridoid glycoside from Vitex negundo (Rehd.) Hand. –Mazz. Tetrahedron 39:3067–3072CrossRefGoogle Scholar
- 30.Ahmad I, Afza N, Anis I, Malik A, Tareen RB (2004) Iridoid galactosides and a benzofuran type sesquiterpene from Buddleja crispa. Heterocycles 63:1875–1881CrossRefGoogle Scholar
- 31.Klimek B (1996) Hydroxycinnamoyl ester glycosides and saponins from flowers of Verbascum Phlomoides. Phytochemistry 43:1281–1284CrossRefPubMedGoogle Scholar
- 32.Kim DK (2009) Antioxidative constituents from the twigs of Vitex rotundifolia. Biomol Ther 17:412–417CrossRefGoogle Scholar
- 33.Piaz FD, Vassallo A, Temraz A, Cotugno R, Belisario MA, Bifulco G, Chini MG, Pisano C, Tommasi ND, Braca A (2013) A chemical-biological study reveals C9-type iridoids as novel heat shock protein 90 (Hsp90) inhibitors. J Med Chem 56:1583–1595CrossRefGoogle Scholar