Advertisement

Financial Markets and Portfolio Management

, Volume 33, Issue 2, pp 133–154 | Cite as

Thematic portfolio optimization: challenging the core satellite approach

  • Florian MethlingEmail author
  • Rüdiger von Nitzsch
Article
  • 73 Downloads

Abstract

In recent years, thematic exchange-traded funds (ETF) have increased in economic significance. Investors in thematic ETFs have more than just financial objectives and gain a non-monetary added value from a thematic portion in their portfolios. Therefore, traditional portfolio optimization models which target only financial criteria cannot suit these investors’ needs anymore. Nevertheless, to account for their thematic interests, investors adapt a core satellite strategy in which conventional core portfolios and thematic satellite portfolios are combined. Thus, these portfolios are separately optimized without further considering inter-portfolio correlation effects. Since modern portfolio theory has originally been established to, inter alia, optimize these correlation effects, portfolios can only be efficient by chance. Therefore, this study targets the correlation effects between conventional and thematic portfolios and uses a tri-criterion thematic portfolio optimization model as an overall framework. Throughout a two-part analysis with tradable ETFs and a simulation with 250,000 draws and 1,750,000 portfolio optimizations performed, the status quo is compared to the tri-criterion model. Quantifying the suboptimality, simulation results show a mean portfolio improvement of 6.23% measured as relative yield enhancement. Further, our analysis concludes that the more narrowly a theme is defined and the more particular it is, relative yield enhancements can increase up to 46.88%.

Keywords

Portfolio management Thematic investing Portfolio optimization Finance Multiple criteria analysis 

JEL Classification

G11 G24 G4 

Notes

Acknowledgements

We would like to thank the editor Markus Schmid and the anonymous referees for their constructive recommendations, which helped to improve the quality of this paper.

Supplementary material

11408_2019_329_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 43 kb)

References

  1. Anand, P., Cowton, C.J.: The ethical investor: exploring dimensions of investment behaviour. J. Econ. Psychol. 14(2), 377–385 (1993).  https://doi.org/10.1016/0167-4870(93)90007-8 Google Scholar
  2. Baker, H.K., Haslem, J.A.: Toward the development of client-specified valuation models. J. Finance 29(4), 1255–1263 (1974).  https://doi.org/10.1111/j.1540-6261.1974.tb03102.x Google Scholar
  3. Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M., Plà-Santamaria, D.: Socially responsible investment: a multicriteria approach to portfolio selection combining ethical and financial objectives. Eur. J. Oper. Res. 216(2), 487–494 (2012).  https://doi.org/10.1016/j.ejor.2011.07.011 Google Scholar
  4. Bana e Costa, C.A., Soares, J.O.: A multicriteria model for portfolio management. Europ. J. Finance 10(3), 198–211 (2004).  https://doi.org/10.1080/1351847032000113254 Google Scholar
  5. Barberis, N., Thaler, R.: Chapter 18 A survey of behavioral finance. Handb. Econ. Finance 1, 1053–1128 (2003).  https://doi.org/10.1016/s1574-0102(03)01027-6 Google Scholar
  6. Barracchini, C.: An ethical investments evaluation for portfolio selection. Electron. J. Bus. Ethics Organ. Stud. 9(1), 1–18 (2004)Google Scholar
  7. Bérubé, V., Ghai, S., Tétrault, J.: From indexes to insights: the rise of thematic investing McKinsey on Investing. Winter 15(1), 51–56 (2014)Google Scholar
  8. DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? Rev. Financ. Stud. 22(5), 1915–1953 (2007)Google Scholar
  9. Ehrgott, M., Klamroth, K., Schwehm, C.: An MCDM approach to portfolio optimization Europ. J. Oper. Res. 155(3), 752–770 (2004).  https://doi.org/10.1016/S0377-2217(02)00881-0 Google Scholar
  10. Forster, G.: On theme Superfunds. Magazine 424, 16 (2017)Google Scholar
  11. Gasser, S.M., Rammerstorfer, M., Weinmayer, K.: Markowitz revisited: social portfolio engineering. Eur. J. Oper. Res. 258(3), 1181–1190 (2017).  https://doi.org/10.1016/j.ejor.2016.10.043 Google Scholar
  12. Giammattei, G.: Global Megatrends: Capitalizing on Tomorrow’s Trends Today. Retrieved from https://us.rbcgam.com/resources/docs/pdf/whitepapers/Global_Megatrends_Whitepaper_FINAL.pdf (2014). Accessed 13 May 2019
  13. Haimes, Y.Y.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971).  https://doi.org/10.1109/tsmc.1971.4308298 Google Scholar
  14. Hirschberger, M., Steuer, R.E., Utz, S., Wimmer, M., Qi, Y.: Computing the nondominated surface in tri-criterion portfolio selection. Oper. Res. 61(1), 169–183 (2013).  https://doi.org/10.1287/opre.1120.1140 Google Scholar
  15. Kahneman, D., Riepe, M.W.: Aspects of investor psychology. Portfolio Manag. 24(4), 52–65 (1998).  https://doi.org/10.3905/jpm.1998.409643 Google Scholar
  16. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Cambridge University Press, Cambridge (1993)Google Scholar
  17. Konno, H., Suzuki, K.-I.: A mean-variance-skewness portfolio optimization model. J. Oper. Res. Soc. Jpn. 38(2), 173–187 (1995).  https://doi.org/10.15807/jorsj.38.173 Google Scholar
  18. Lewis, A.: A focus group study of the motivation to invest: ‘ethical/green’ and ‘ordinary’ investors compared. J. Soc. Econ. 30(4), 331–341 (2001).  https://doi.org/10.1016/s1053-5357(01)00103-2 Google Scholar
  19. Magoon, C.: Better than sectors: the case for thematic investing. J. Indexes 12(5), 18–25 (2009)Google Scholar
  20. Marchioni, U., Antropova, S., Thomson, C., McNaught, C., Schwaiger, K.: Megatrends: an index approach to thematic investing. Retrieved from https://www.ishares.com/uk/individual/en/literature/brochure/ishares-megatrends-thematic-investing-en-gb-rc-end-investor.pdf (2016). Accessed 14 Nov 2017
  21. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77 (1952).  https://doi.org/10.2307/2975974 Google Scholar
  22. Markowitz, H.: Portfolio selection: efficient diversification of investments, 2nd edn. Blackwell, Cambridge (1996)Google Scholar
  23. Sharpe, W.F.: The sharpe ratio. Portfolio Manag. 21(1), 49–58 (1994)Google Scholar
  24. Spronk, J., Hallerbach, W.: Financial modelling: Where to go? With an illustration for portfolio management. Eur. J. Oper. Res. 99(1), 113–125 (1997).  https://doi.org/10.1016/S0377-2217(96)00386-4 Google Scholar
  25. Steuer, R.E., Qi, Y., Hirschberger, M.: Portfolio optimization: new capabilities and future methods. J. Bus. Econ. 76(2), 199–220 (2006).  https://doi.org/10.1007/s11573-006-0006-z Google Scholar
  26. Steuer, R.E., Qi, Y., Hirschberger, M.: Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Ann. Oper. Res. 152(1), 297–317 (2007).  https://doi.org/10.1007/s10479-006-0137-1 Google Scholar
  27. Steuer, R.E., Qi, Y., Hirschberger, M.: Portfolio selection in the presence of multiple criteria. Handb. Financ. Eng. 18, 3–24 (2008).  https://doi.org/10.1007/978-0-387-76682-9_1 Google Scholar
  28. Stone, B.K.: A linear programming formulation of the general portfolio selection problem. J. Financ. Quant. Anal. 8(4), 621 (1973).  https://doi.org/10.2307/2329828 Google Scholar
  29. US SIF Foundation: Report on US sustainable, responsible and impact investing trends 2018 (2018)Google Scholar
  30. Utz, S., Wimmer, M., Hirschberger, M., Steuer, R.E.: Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. Eur. J. Oper. Res. 234(2), 491–498 (2014).  https://doi.org/10.1016/j.ejor.2013.07.024 Google Scholar
  31. Utz, S., Wimmer, M., Steuer, R.E.: Tri-criterion modeling for constructing more-sustainable mutual funds. Eur. J. Oper. Res. 246(1), 331–338 (2015).  https://doi.org/10.1016/j.ejor.2015.04.035 Google Scholar
  32. Webley, P., Lewis, A., Mackenzie, C.: Commitment among ethical investors: an experimental approach. J. Econ. Psychol. 22(1), 27–42 (2001).  https://doi.org/10.1016/S0167-4870(00)00035-0 Google Scholar

Copyright information

© Swiss Society for Financial Market Research 2019

Authors and Affiliations

  1. 1.Decision Theory and Financial Services GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations