Advertisement

Extreme spillovers of VIX fear index to international equity markets

  • Massaporn Cheuathonghua
  • Chaiyuth PadungsaksawasdiEmail author
  • Pattana Boonchoo
  • Jittima Tongurai
Article
  • 42 Downloads

Abstract

This study analyzes the impact of VIX spillovers on market activities during extreme market conditions in 42 international equity markets from 1998 to 2014. Specifically, tail cross-dependence suggests that a small change in VIX significantly influences global market activities during extreme market conditions. The impact of VIX is asymmetric, which is more pronounced in bearish, highly volatile, and low trading volume markets. Moreover, VIX spillovers exhibit a stronger impact on returns in developed markets and on volatility in emerging markets. In terms of geographical location, the impact of VIX spillovers is more pronounced on returns in Europe and on volatility in Latin America. These findings indicate that international investors can potentially benefit from international portfolio diversification and can serve as useful guidance to policymakers in designing appropriate policies.

Keywords

VIX Tail distribution Extreme market conditions International equity market 

JEL Classification

F36 G15 F3 

Notes

Acknowledgements

Special thanks go to Markus Schmid (the editor), the anonymous referee, Ben R. Marshall, Bart Frijns, Pornchai Chunchinda, Seksak Jumroenvong, Tatre Jantarakolica, and Termkiat Kanchanapoom for their suggestions and comments. We also thank Maria E. De Boyrie (the discussant) and the participants of the 2016 Annual Auckland Finance Meeting.

References

  1. Abdelhédi-Zouch, M., Abbes, M.B., Boujelbène, Y.: Volatility spillover and investor sentiment: subprime crisis. Asian Acad. Manag. J. Acc. Finance 11(2), 83–101 (2015)Google Scholar
  2. Agbeyegbe, T.D.: Modeling US stock market volatility-return dependence using conditional copula and quantile regression. In: Chichilnisky, I.G., Rezai, A. (eds.) The Economics of Global Environment: Catastrophic Risks in Theory and Policy, 1st edn. Springer, New York (2016)Google Scholar
  3. Ajmi, A.N., Gupta, R., Kanda, P.T.: Causality between economic policy uncertainty across countries: evidence from linear and nonlinear tests. Front. Finance Econ. 11(1), 73–102 (2014)Google Scholar
  4. Allen, D., Singh, A.K., Powell, R.J., McAleer, M., Taylor, J., Thomas, L.: The volatility-return relationship: Insights from linear and non-linear quantile regression (Discussion Paper No. 831). Retrieved from https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/160704/1/DP831.pdf (2012)
  5. Anderson, T.G., Benzoni, L.: Stochastic Volatility (WP 2009-04). Chicago, Illinois, USA (2009)Google Scholar
  6. Arouri, M.E.H., Jouini, J., Nguyen, D.K.: Volatility spillovers between oil prices and stock sector returns: implications for portfolio management. J. Int. Money Finance 30(7), 1387–1405 (2011).  https://doi.org/10.1016/j.jimonfin.2011.07.008 CrossRefGoogle Scholar
  7. Badshah, I., Frijns, B., Knif, J., Tourani-Rad, A.: Asymmetries of the intraday return-volatility relation. Int. Rev. Financ. Anal. 48, 182–192 (2016).  https://doi.org/10.1016/j.irfa.2016.09.016 CrossRefGoogle Scholar
  8. Bae, J., Kim, C.J., Nelson, C.R.: Why are stock returns and volatility negatively correlated? J. Empir. Finance 14(1), 41–58 (2007).  https://doi.org/10.1016/j.jempfin.2006.04.005 CrossRefGoogle Scholar
  9. Bae, K.-H., Karolyi, A.G.: Good news, bad news and international spillovers of stock return volatility between Japan and the U.S. Pac. Basin Finance J. 2(4), 405–438 (1994).  https://doi.org/10.1016/0927-538X(94)90003-5 CrossRefGoogle Scholar
  10. Baker, S.R., Davis, S.J., Dashkeyev, V., Deriy, O., Dinh, E., Ezure, Y., et al.: Measuring economic policy uncertainty. Q. J. Econ. 131(4), 1593–1636 (2016).  https://doi.org/10.1093/qje/qjw024.Advance CrossRefGoogle Scholar
  11. Bakshi, G.S., Madan, D.B.: Crash discovery in stock markets. Retrieved from http://www.ssrn.com/abstract=156729 (2006)
  12. Balcilar, M., Gupta, R., Nguyen, D.K., Wohar, M.E.: Causal Effects of the United States and Japan on Pacific-Rim Stock Markets : Causal Effects of the United States and Japan on Pacific-Rim Stock Markets : Nonparametric Quantile Causality Approach (No. Working Paper No. 201595) (2015)Google Scholar
  13. Bandopadhyaya, A., Jones, A.L.: Measures of investor sentiment: a comparative analysis put-call ratio vs. volatility index. J. Bus. Econ. Res. (2011).  https://doi.org/10.19030/jber.v6i8.2458 CrossRefGoogle Scholar
  14. Barberis, N.: The psychology of tail events : progress and challenges. Am. Econ. Rev. 103(3), 611–616 (2013)CrossRefGoogle Scholar
  15. Barberis, N., Greenwood, R., Jin, L., Shleifer, A.: Extrapolation and Bubbles (NBER Working Paper No. w21944). Retrieved from http://www.nber.org/papers/w21944.pdf (2016)
  16. Beirne, J., Caporale, G.M., Schulze-Ghattas, M., Spagnolo, N.: Global and regional spillovers in emerging stock markets: a multivariate GARCH-in-mean analysis. Emerg. Mark. Rev. 11(3), 250–260 (2010).  https://doi.org/10.1016/j.ememar.2010.05.002 CrossRefGoogle Scholar
  17. Bekaert, G., Ehrmann, M., Fratzscher, M., Mehl, A.: The global crisis and equity market contagion. J. Finance 69(6), 2597–2649 (2014).  https://doi.org/10.1111/jofi.12203 CrossRefGoogle Scholar
  18. Bloom, N.: The impact of uncertainty shocks. Econometrica 77(3), 623–685 (2009).  https://doi.org/10.3982/ECTA6248 CrossRefGoogle Scholar
  19. Bollerslev, T., Todorov, V., Xu, L.: Tail risk premia and return predictability. J. Financ. Econ. 118(1), 113–134 (2015).  https://doi.org/10.1016/j.jfineco.2015.02.010 CrossRefGoogle Scholar
  20. Brogaard, J., Detzel, A.: The asset-pricing implications of government economic policy uncertainty. Manag. Sci. 61(1), 3–18 (2015).  https://doi.org/10.1287/mnsc.2014.2044 CrossRefGoogle Scholar
  21. Carriero, A., Mumtaz, H., Theodoridis, K., Theophilopoulou, A.: The impact of uncertainty shocks under measurement error: a proxy SVAR approach. J. Money Credit Bank. 47(6), 1224–1238 (2015)CrossRefGoogle Scholar
  22. Chen, C.Y.-H.: Does fear spill over? Asia-Pac. J. Financ. Stud. 43, 465–491 (2014).  https://doi.org/10.1111/ajfs.12055 CrossRefGoogle Scholar
  23. Chuliá, H., Guillén, M., Uribe, J.M.: Measuring uncertainty in the stock market. Int. Rev. Econ. Finance 48, 18–33 (2017a).  https://doi.org/10.1016/j.iref.2016.11.003 CrossRefGoogle Scholar
  24. Chuliá, H., Guillén, M., Uribe, J.M.: Spillovers from the United States to Latin American and G7 stock markets: a VAR quantile analysis. Emerg. Mark. Rev. 31, 32–46 (2017b).  https://doi.org/10.1016/j.ememar.2017.01.001 CrossRefGoogle Scholar
  25. Devereux, M. B., Yu, C.: International Financial Integration and Crisis Contagion. NBER Working Paper Series. http://doi.org/10.3386/w20526 (2014)
  26. Diebold, F.X., Yilmaz, K.: Measuring financial asset return and volatility spillovers, with application to global equity markets. Econ. J. 119, 158–171 (2009). Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0297.2008.02208.x/full
  27. Ehrmann, M., Fratzscher, M., Rigobon, R.: Stocks, bonds, money markets, and exchange rates: measuring international financial transmission. J. Appl. Econom. 26(6), 948–974 (2011).  https://doi.org/10.1002/jae CrossRefGoogle Scholar
  28. French, K.R., Schwert, G.W.W., Stambaugh, R.F.: Expected stock returns and volatility. J. Financ. Econ. 19, 3–29 (1987).  https://doi.org/10.1016/0304-405x(87)90026-2 CrossRefGoogle Scholar
  29. Gupta, R., Pierdzioch, C., Risse, M.: On international uncertainty links: BART-based empirical evidence for Canada. Econ. Lett. 143, 24–27 (2016).  https://doi.org/10.1016/j.econlet.2016.03.009 CrossRefGoogle Scholar
  30. Hamao, Y., Masulis, R.W., Ng, V.: Correlations of price changes and volatility across international stock markets. Rev. Financ. Stud. 3(2), 281–307 (1990)CrossRefGoogle Scholar
  31. Hibbert, A.M., Daigler, R.T., Dupoyet, B.: A behavioral explanation for the negative asymmetric return-volatility relation. J. Bank. Finance 32, 2254–2266 (2008).  https://doi.org/10.1016/j.jbankfin.2007.12.046 CrossRefGoogle Scholar
  32. Hoffmann, A.O.I., Post, T., Pennings, J.M.E.: Individual investor perceptions and behavior during the financial crisis. J. Bank. Finance (2013).  https://doi.org/10.1016/j.jbankfin.2012.08.007 CrossRefGoogle Scholar
  33. Jiang, G.J., Konstantinidi, E., Skiadopoulos, G.: Volatility spillovers and the effect of news announcements. J. Bank. Finance 36(8), 2260–2273 (2012).  https://doi.org/10.1016/j.jbankfin.2012.04.006 CrossRefGoogle Scholar
  34. Jurado, K., Ludvigson, S.C., Ng, S.: Measuring uncertainty. Am. Econ. Rev. 105(3), 1177–1216 (2015)CrossRefGoogle Scholar
  35. Kelly, B., Jiang, H.: Tail risk and asset prices. Rev. Financ. Stud. 27(10), 2841–2871 (2014).  https://doi.org/10.1093/rfs/hhu039 CrossRefGoogle Scholar
  36. Kim, S.W., Rogers, J.H.: International stock price spillovers and market liberalization: Evidence from Korea, Japan, and the United States. J. Empir. Finance 2, 117–133 (1995).  https://doi.org/10.1016/0927-5398(94)00013-7 CrossRefGoogle Scholar
  37. Klößner, S., Sekkel, R.: International spillovers of policy uncertainty. Econ. Lett. 124(3), 508–512 (2014).  https://doi.org/10.1016/j.econlet.2014.07.015 CrossRefGoogle Scholar
  38. Koenker, R.W., Bassett, G.: Regression Quantiles. Econometrica 46(1), 33–50 (1978).  https://doi.org/10.2307/1913643 CrossRefGoogle Scholar
  39. Koutmos, G., Booth, G.G.: Asymmetric volatility transmission in international stock markets. J. Int. Money Finance 14(6), 747–762 (1995).  https://doi.org/10.1016/0261-5606(95)00031-3 CrossRefGoogle Scholar
  40. Lee, Y.H.: Global and regional range-based volatility spillover effects. Emerg. Mark. Rev. 14(1), 1–10 (2013).  https://doi.org/10.1016/j.ememar.2012.09.007 CrossRefGoogle Scholar
  41. Mensi, W., Hammoudeh, S., Reboredo, J.C., Nguyen, D.K.: Do global factors impact BRICS stock markets? A quantile regression approach. Emerg. Mark. Rev. 19, 1–17 (2014).  https://doi.org/10.1016/j.ememar.2014.04.002 CrossRefGoogle Scholar
  42. Mumtaz, H., Zanetti, F.: The impact of the volatility of monetary policy shocks. J. Money Credit Bank. 45(4), 535–558 (2013).  https://doi.org/10.1111/jmcb.12015 CrossRefGoogle Scholar
  43. Neaime, S.: The global financial crisis, financial linkages and correlations in returns and volatilities in emerging MENA stock markets. Emerg. Mark. Rev. 13(3), 268–282 (2012).  https://doi.org/10.1016/j.ememar.2012.01.006 CrossRefGoogle Scholar
  44. Ng, A.: Volatility spillover effects from Japan and the US to the Pacific-Basin. J. Int. Money Finance 19(2), 207–233 (2000).  https://doi.org/10.1016/S0261-5606(00)00006-1 CrossRefGoogle Scholar
  45. Okimoto, T.: New evidence of asymmetric dependence structures in international equity markets. J. Financ. Quant. Anal. 43(3), 787–816 (2008)CrossRefGoogle Scholar
  46. Olsen, R.A.: Behavioral finance and its implication for stock-price volatility. Financ. Anal. J. 54(2), 10–17 (1998).  https://doi.org/10.2307/4480062 CrossRefGoogle Scholar
  47. Padungsaksawasdi, C., Daigler, R.T.: Testing the behavioral approach of the return-implied volatility relation: the 2008 financial crisis versus normal markets. Rev. Futures Mark. 21(4), 479–509 (2014)Google Scholar
  48. Rittler, D.: Price discovery and volatility spillovers in the European Union emissions trading scheme: a high-frequency analysis. J. Bank. Finance 36(3), 774–785 (2012).  https://doi.org/10.1016/j.jbankfin.2011.09.009 CrossRefGoogle Scholar
  49. Rossi, B., Sekhposyan, T.: Macroeconomic uncertainty indices based on nowcast and forecast error distributions. Am. Econ. Rev. 105(5), 650–655 (2015).  https://doi.org/10.1257/aer.p20151124 CrossRefGoogle Scholar
  50. Shefrin, H.: Behavioral Corporate Finance. McGraw Hill, New York (2007)Google Scholar
  51. Simon, D.P., Wiggins, R.A.: S&P futures returns and contrary sentiment indicators. J. Futures Mark. 21(8), 447–462 (2001).  https://doi.org/10.1002/fut.4 CrossRefGoogle Scholar
  52. Takeda, F., Wakao, T.: Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pac. Basin Finance J. 27, 1–18 (2014).  https://doi.org/10.1016/j.pacfin.2014.01.003 CrossRefGoogle Scholar
  53. Whaley, R.E.: The investor fear gauge. J. Portf. Manag. 26(3), 12–17 (2000).  https://doi.org/10.3905/jpm.2000.319728 CrossRefGoogle Scholar
  54. White, H., Kim, T.H., Manganelli, S.: VAR for VaR: measuring tail dependence using multivariate regression quantiles. J. Econom. 187(1), 169–188 (2015).  https://doi.org/10.1016/j.jeconom.2015.02.004 CrossRefGoogle Scholar
  55. Yin, L., Han, L.: Spillovers of macroeconomic uncertainty among major economies. Appl. Econ. Lett. 21(13), 938–944 (2014).  https://doi.org/10.1080/13504851.2014.899665 CrossRefGoogle Scholar

Copyright information

© Swiss Society for Financial Market Research 2019

Authors and Affiliations

  • Massaporn Cheuathonghua
    • 1
  • Chaiyuth Padungsaksawasdi
    • 1
    Email author
  • Pattana Boonchoo
    • 2
  • Jittima Tongurai
    • 3
  1. 1.Department of Finance, Thammasat Business SchoolThammasat UniversityBangkokThailand
  2. 2.Department of Marketing, Thammasat Business SchoolThammasat UniversityBangkokThailand
  3. 3.Graduate School of Business AdministrationKobe UniversityKobeJapan

Personalised recommendations