Chinese Annals of Mathematics, Series B

, Volume 41, Issue 1, pp 133–146 | Cite as

Certain Curvature Conditions on P-Sasakian Manifolds Admitting a Quater-Symmetric Metric Connection

  • Uday Chand De
  • Peibiao Zhao
  • Krishanu Mandal
  • Yanling HanEmail author


The authors consider a quarter-symmetric metric connection in a P-Sasakian manifold and study the second order parallel tensor in a P-Sasakian manifold with respect to the quarter-symmetric metric connection. Then Ricci semisymmetric P-Sasakian manifold with respect to the quarter-symmetric metric connection is considered. Next the authors study ξ-concircularly flat P-Sasakian manifolds and concircularly semisymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection. Furthermore, the authors study P-Sasakian manifolds satisfying the condition \(\tilde Z(\xi ,Y) \cdot \tilde S = 0\), where \(\tilde Z, \tilde S\) are the concircular curvature tensor and Ricci tensor respectively with respect to the quarter-symmetric metric connection. Finally, an example of a 5-dimensional P-Sasakian manifold admitting quarter-symmetric metric connection is constructed.


Quarter-symmetric metric connection P-Sasakian manifold Ricci semi-symmetric manifold ξ-Concircularly flat Concircularly semisymmetric 

2000 MR Subject Classification

53C35 53D40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The fourth author would like to thank Professor P. B. Zhao and U. C. De for their help.


  1. [1]
    Adati, T. and Matsumoto, K., On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., 13, 1977, 25–32.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Adati, T. and Miyazawa, T., Some properties of P-Sasakian manifolds, TRU Math., 13, 1977, 33–42.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Biswas, S. C. and De, U. C., Quarter-symmetric metric connection in SP-Sasakian manifold, Common. Fac. Sci. Univ. Ank. Al., 46, 1997, 49–56.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Blair, D. E., Inversion Theory and Conformal Mapping, Stud. Math. Libr., 9, Amer. Math. Soc., Provindence, RI, 2000.zbMATHGoogle Scholar
  5. [5]
    Blair, D. E., Kim, J. S. and Tripathi, M. M., On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42, 2005, 883–892.MathSciNetCrossRefGoogle Scholar
  6. [6]
    De, U. C., Özgür, C., Arslan, K., et al., On a type of P-Sasakian manifolds, Mathematica Balkanica, 22, 2008, 25–36.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Desmukh, S. and Ahmed, S., Para Sasakian manifolds isometrically immersed in spaces of constant curvature, Kyungpook J. Math., 20, 1980, 112–121.Google Scholar
  8. [8]
    Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.), 29, 1975, 249–254.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Han, Y., Yun, H. T. and Zhao, P., Some invariants of quarter-symmetric metric connections under the projective transformation, Filomat, 27(4), 2013, 679–691.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Kuhnel, W., Conformal transformations between einstein spaces, Conform. Geometry, Aspects Math., 12, Vieweg, Braunschweig, 1988, 105–146.zbMATHGoogle Scholar
  11. [11]
    Mandal, K. and De, U. C., Quarter-symmetric metric connection in a P-Sasakian manifold, Analele Universitatii de Vest Timisoara, Seria Matematica Informatica, 53, 2015, 137–150.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Matsumoto, K., Ianus, S. and Mihai, I., On P-Sasakian manifolds which admit certain tenso fields, Publ. Math. Debrecen, 33, 1986, 61–65.zbMATHGoogle Scholar
  13. [13]
    Mukhopadhyay, S., Roy, A. K. and Barua, B., Some properties of quarter-symmetric metric connection on a Riemannian manifold, Soochow J. Math., 17, 1991, 205–211.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Ögür, C., On a class of Para-Sasakian manifolds, Turkish J. Math., 29, 2005, 249–257.MathSciNetGoogle Scholar
  15. [15]
    Rastogi, S. C., On quarter-symmetric metric connection, C. R. Acad. Sci. Bulgar, 31, 1978, 811–814.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Rastogi, S. C., On quarter-symmetric metric connection, Tensor (N.S.), 44, 1987, 133–141.MathSciNetzbMATHGoogle Scholar
  17. [17]
    Satō, I., On a structure similar to the almost contact structure, Tensor (N.S.), 30, 1976, 219–224.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Satō, I. and Matsumoto, K., On P-Sasakian manifolds satisfying certain conditions, Tensor (N.S.), 33, 1979, 173–178.MathSciNetzbMATHGoogle Scholar
  19. [19]
    Sular, S., Özgür, C. and De, U. C., Quarter-symmetric metric connection in a Kenmotsu manifold, SUT J. of Math., 44, 2008, 297–306.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Szabó, Z. I., Structure theorems on Riemannian spaces satisfying R(X,Y).R = 0, I, the local version, J. Differential. Geom., 17, 1982, 531–582.MathSciNetCrossRefGoogle Scholar
  21. [21]
    Tashiro, Y., Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., 117, 1965, 251–275.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Yano, K., Concircular geometry I, Concircular transformation, Proc. Imp. Acad. Tokyo, 16, 1940, 195–200.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Yano, K., On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl., 15, 1970, 1579–1586.MathSciNetzbMATHGoogle Scholar
  24. [24]
    Yano, K. and Imai, T., Quarter-symmetric metric connections and their curvature tensors, Tensor (N.S.), 38, 1982, 13–18.MathSciNetzbMATHGoogle Scholar
  25. [25]
    Yano, K. and Kon, M., Structures on Manifolds, 40, World Scientific, Singapore, 1984.zbMATHGoogle Scholar
  26. [26]
    Yildiz, A., Turan, M. and Acet, B. E., On Para-Sasakian Manifolds, DPU Fen Bilimleri Enstitusu Dergis, 24, 2011, 27–34.Google Scholar
  27. [27]
    Zhen, G., Cabrerizo, J. L., Fernandez, L. M. and Fernandez, M., On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28, 1997, 725–734.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2020

Authors and Affiliations

  • Uday Chand De
    • 1
  • Peibiao Zhao
    • 2
  • Krishanu Mandal
    • 1
  • Yanling Han
    • 3
    Email author
  1. 1.Department of Pure MathematicsUniversity of CalcuttaCalcuttaIndia
  2. 2.Department of MathematicsNanjing University of Science and TechnologyNanjingChina
  3. 3.School of Mathematics and StatisticsQilu University of Technology (Shandong Academy of Sciences)JinanChina

Personalised recommendations