Certain Curvature Conditions on P-Sasakian Manifolds Admitting a Quater-Symmetric Metric Connection
- 11 Downloads
Abstract
The authors consider a quarter-symmetric metric connection in a P-Sasakian manifold and study the second order parallel tensor in a P-Sasakian manifold with respect to the quarter-symmetric metric connection. Then Ricci semisymmetric P-Sasakian manifold with respect to the quarter-symmetric metric connection is considered. Next the authors study ξ-concircularly flat P-Sasakian manifolds and concircularly semisymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection. Furthermore, the authors study P-Sasakian manifolds satisfying the condition \(\tilde Z(\xi ,Y) \cdot \tilde S = 0\), where \(\tilde Z, \tilde S\) are the concircular curvature tensor and Ricci tensor respectively with respect to the quarter-symmetric metric connection. Finally, an example of a 5-dimensional P-Sasakian manifold admitting quarter-symmetric metric connection is constructed.
Keywords
Quarter-symmetric metric connection P-Sasakian manifold Ricci semi-symmetric manifold ξ-Concircularly flat Concircularly semisymmetric2000 MR Subject Classification
53C35 53D40Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgement
The fourth author would like to thank Professor P. B. Zhao and U. C. De for their help.
References
- [1]Adati, T. and Matsumoto, K., On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., 13, 1977, 25–32.MathSciNetzbMATHGoogle Scholar
- [2]Adati, T. and Miyazawa, T., Some properties of P-Sasakian manifolds, TRU Math., 13, 1977, 33–42.MathSciNetzbMATHGoogle Scholar
- [3]Biswas, S. C. and De, U. C., Quarter-symmetric metric connection in SP-Sasakian manifold, Common. Fac. Sci. Univ. Ank. Al., 46, 1997, 49–56.MathSciNetzbMATHGoogle Scholar
- [4]Blair, D. E., Inversion Theory and Conformal Mapping, Stud. Math. Libr., 9, Amer. Math. Soc., Provindence, RI, 2000.zbMATHGoogle Scholar
- [5]Blair, D. E., Kim, J. S. and Tripathi, M. M., On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42, 2005, 883–892.MathSciNetCrossRefGoogle Scholar
- [6]De, U. C., Özgür, C., Arslan, K., et al., On a type of P-Sasakian manifolds, Mathematica Balkanica, 22, 2008, 25–36.MathSciNetzbMATHGoogle Scholar
- [7]Desmukh, S. and Ahmed, S., Para Sasakian manifolds isometrically immersed in spaces of constant curvature, Kyungpook J. Math., 20, 1980, 112–121.Google Scholar
- [8]Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.), 29, 1975, 249–254.MathSciNetzbMATHGoogle Scholar
- [9]Han, Y., Yun, H. T. and Zhao, P., Some invariants of quarter-symmetric metric connections under the projective transformation, Filomat, 27(4), 2013, 679–691.MathSciNetCrossRefGoogle Scholar
- [10]Kuhnel, W., Conformal transformations between einstein spaces, Conform. Geometry, Aspects Math., 12, Vieweg, Braunschweig, 1988, 105–146.zbMATHGoogle Scholar
- [11]Mandal, K. and De, U. C., Quarter-symmetric metric connection in a P-Sasakian manifold, Analele Universitatii de Vest Timisoara, Seria Matematica Informatica, 53, 2015, 137–150.MathSciNetzbMATHGoogle Scholar
- [12]Matsumoto, K., Ianus, S. and Mihai, I., On P-Sasakian manifolds which admit certain tenso fields, Publ. Math. Debrecen, 33, 1986, 61–65.zbMATHGoogle Scholar
- [13]Mukhopadhyay, S., Roy, A. K. and Barua, B., Some properties of quarter-symmetric metric connection on a Riemannian manifold, Soochow J. Math., 17, 1991, 205–211.MathSciNetzbMATHGoogle Scholar
- [14]Ögür, C., On a class of Para-Sasakian manifolds, Turkish J. Math., 29, 2005, 249–257.MathSciNetGoogle Scholar
- [15]Rastogi, S. C., On quarter-symmetric metric connection, C. R. Acad. Sci. Bulgar, 31, 1978, 811–814.MathSciNetzbMATHGoogle Scholar
- [16]Rastogi, S. C., On quarter-symmetric metric connection, Tensor (N.S.), 44, 1987, 133–141.MathSciNetzbMATHGoogle Scholar
- [17]Satō, I., On a structure similar to the almost contact structure, Tensor (N.S.), 30, 1976, 219–224.MathSciNetzbMATHGoogle Scholar
- [18]Satō, I. and Matsumoto, K., On P-Sasakian manifolds satisfying certain conditions, Tensor (N.S.), 33, 1979, 173–178.MathSciNetzbMATHGoogle Scholar
- [19]Sular, S., Özgür, C. and De, U. C., Quarter-symmetric metric connection in a Kenmotsu manifold, SUT J. of Math., 44, 2008, 297–306.MathSciNetzbMATHGoogle Scholar
- [20]Szabó, Z. I., Structure theorems on Riemannian spaces satisfying R(X,Y).R = 0, I, the local version, J. Differential. Geom., 17, 1982, 531–582.MathSciNetCrossRefGoogle Scholar
- [21]Tashiro, Y., Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc., 117, 1965, 251–275.MathSciNetCrossRefGoogle Scholar
- [22]Yano, K., Concircular geometry I, Concircular transformation, Proc. Imp. Acad. Tokyo, 16, 1940, 195–200.MathSciNetCrossRefGoogle Scholar
- [23]Yano, K., On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl., 15, 1970, 1579–1586.MathSciNetzbMATHGoogle Scholar
- [24]Yano, K. and Imai, T., Quarter-symmetric metric connections and their curvature tensors, Tensor (N.S.), 38, 1982, 13–18.MathSciNetzbMATHGoogle Scholar
- [25]Yano, K. and Kon, M., Structures on Manifolds, 40, World Scientific, Singapore, 1984.zbMATHGoogle Scholar
- [26]Yildiz, A., Turan, M. and Acet, B. E., On Para-Sasakian Manifolds, DPU Fen Bilimleri Enstitusu Dergis, 24, 2011, 27–34.Google Scholar
- [27]Zhen, G., Cabrerizo, J. L., Fernandez, L. M. and Fernandez, M., On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28, 1997, 725–734.MathSciNetzbMATHGoogle Scholar