Advertisement

Chinese Annals of Mathematics, Series B

, Volume 41, Issue 1, pp 37–48 | Cite as

The Coefficient Inequalities for a Class of Holomorphic Mappings in Several Complex Variables

  • Qinghua XuEmail author
  • Taishun LiuEmail author
  • Xiaosong LiuEmail author
Article
  • 6 Downloads

Abstract

The authors establish the coefficient inequalities for a class of holomorphic mappings on the unit ball in a complex Banach space or on the unit polydisk in ℂn, which are natural extensions to higher dimensions of some Fekete and Szegö inequalities for subclasses of the normalized univalent functions in the unit disk.

Keywords

Coefficient inequality Fekete-Szegö problem Quasi-convex mappings 

2000 MR Subject Classification

32H02 30C45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors are grateful to the anonymous referees for their valuable comments and suggestions which help them to improve the quality of the paper.

References

  1. [1]
    Fekete, M. and Szegö, G., Eine Bemerkunguber ungerade schlichte Funktionen, J. Lond. Math. Soc., 8, 1933, 85–89.CrossRefGoogle Scholar
  2. [2]
    Graham, I., Hamada, H., Honda, T., et al., Growth, distortion and coefficient bounds for Carathéodory families in ℂn and complex Banach spaces, J. Math. Anal. Appl., 416, 2014, 449–469.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Graham, I., Hamada, H. and Kohr, G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54, 2002, 324–351.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Graham, I. and Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.zbMATHGoogle Scholar
  5. [5]
    Graham, I., Kohr, G. and Kohr, M., Loewner chains and parametric representation in several complex variables, J. Math. Anal. Appl., 281, 2003, 425–438.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Hamada, H. and Honda, T., Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables, Chin. Ann. Math. Ser. B, 29, 2008, 353–368.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Hamada, H., Honda, T. and Kohr, G., Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation, J. Math. Anal. Appl., 317, 2006, 302–319.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Keogh, F. R. and Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20, 1969, 8–12.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Kohr, G., On some best bounds for coefficients of several subclasses of biholomorphic mappings in ℂn, Complex Variables, 36, 1998, 261–284.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Liu, X. S. and Liu, M. S., Quasi-convex mappings of order α on the unit polydisc in ℂn, Rocky Mountain Journal of Mathematics, 40(5), 2010, 1619–1643.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Liu, X. S. and Liu, T. S., The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in ℂn, Chin. Ann. Math. Ser. B, 32, 2011, 241–252.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Robertson, M. S., On the theory of univalent functions, Ann. Math., 37, 1936, 374–408.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Roper, K. and Suffridge, T. J., Convexity properties of holomorphic mappings in ℂn, Trans. Amer. Math. Soc., 351, 1999, 1803–1833.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Xu, Q. H., Fang, F. and Liu, T. S., On the Fekete and Szego problem for starlike mappings of order α, Acta Math. Sin. (Engl. Ser.), 33, 2017, 1–11.MathSciNetGoogle Scholar
  15. [15]
    Xu, Q. H. and Liu, T. S., On coefficient estimates for a class of holomorphic mappings, Sci China Math., 52, 2009, 677–686.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Xu, Q. H. and Liu, T. S., On the Fekete and Szego problem for the class of starlike mappings in several complex variables, Abstr. Appl. Anal., 2014, 2014, 807026.MathSciNetzbMATHGoogle Scholar
  17. [17]
    Xu, Q. H., Liu, T. S. and Liu, X. S., The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings, J. Math. Anal. Appl., 389, 2012, 781–791.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Xu, Q. H., Yang, T., Liu, T. S. and Xu, H. M., Fekete and Szego problem for a subclass of quasi-convex mappings in several complex variables, Front. Math. China, 10, 2015, 1461–1472.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2020

Authors and Affiliations

  1. 1.School of ScienceZhejiang University of Science and TechnologyHangzhouChina
  2. 2.Department of MathematicsHuzhou Teacher’s UniversityHuzhouChina
  3. 3.School of Mathematics and Computation ScienceLingnan Normal UniversityZhanjiangChina

Personalised recommendations