Advertisement

Chinese Annals of Mathematics, Series B

, Volume 40, Issue 6, pp 1005–1038 | Cite as

Balanced and Unbalanced Components of Moist Atmospheric Flows with Phase Changes

  • Alfredo N. WetzelEmail author
  • Leslie M. SmithEmail author
  • Samuel N. StechmannEmail author
  • Jonathan E. MartinEmail author
Article
  • 7 Downloads

Abstract

Atmospheric variables (temperature, velocity, etc.) are often decomposed into balanced and unbalanced components that represent low-frequency and high-frequency waves, respectively. Such decompositions can be defined, for instance, in terms of eigen-modes of a linear operator. Traditionally these decompositions ignore phase changes of water since phase changes create a piecewise-linear operator that differs in different phases (cloudy versus non-cloudy). Here we investigate the following question: How can a balanced-unbalanced decomposition be performed in the presence of phase changes? A method is described here motivated by the case of small Froude and Rossby numbers, in which case the asymptotic limit yields precipitating quasi-geostrophic equations with phase changes. Facilitated by its zero-frequency eigenvalue, the balanced component can be found by potential vorticity (PV) inversion, by solving an elliptic partial differential equation (PDE), which includes Heaviside discontinuities due to phase changes. The method is also compared with two simpler methods: one which neglects phase changes, and one which simply treats the raw pressure data as a streamfunction. Tests are shown for both synthetic, idealized data and data from Weather Research and Forecasting (WRF) model simulations. In comparisons, the phase-change method and no-phase-change method produce substantial differences within cloudy regions, of approximately 5 K in potential temperature, due to the presence of clouds and phase changes in the data. A theoretical justification is also derived in the form of a elliptic PDE for the differences in the two streamfunctions.

Keywords

Potential vorticity inversion Moist atmospheric dynamics Slow-fast systems Balanced-unbalanced decomposition Elliptic partial differential equations 

2000 MR Subject Classification

35R05 86A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bannon, P. R., Onthe anelastic approximation for a compressible atmosphere, J. Atmos. Sci., 53(23), 1996, 3618–3628.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Derber, J. and Bouttier, F., Areformulation of the background error covariance in the ECMWF global data assimilation system, Tellus A, 51(2), 1999, 195–221.CrossRefGoogle Scholar
  3. [3]
    Dutrifoy, A. and Majda, A. J., Thedynamics of equatorial long waves: a singular limit with fast variable coefficients, Commun. Math. Sci., 4(2), 2006, 375–397.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Dutrifoy, A. and Majda, A. J., Fastwave averaging for the equatorial shallow water equations, Comm.PDEs, 32(10), 2007, 1617–1642.zbMATHCrossRefGoogle Scholar
  5. [5]
    Dutrifoy, A. and Majda, A. J. and Schochet, S., Asimple justification of the singular limit for equatorial shallow-water dynamics, Coram. Pure Appl. Math., 62(3), 2009, 322–333.zbMATHCrossRefGoogle Scholar
  6. [6]
    Emanuel, K. A., AtmosphericConvection, Oxford University Press, New York, 1994.Google Scholar
  7. [7]
    Embid, P. F. and Majda, A. J., Averagingover fast gravity waves for geophysical flows with arbitary potential vorticity, Comm. PDEs, 21(3-4), 1996, 619–658.zbMATHCrossRefGoogle Scholar
  8. [8]
    Embid, P. F. and Majda, A. J., LowFroude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geophys. Astrophys. Fluid Dynam., 87(1-2), 1998, 1–50.CrossRefGoogle Scholar
  9. [9]
    Fogelson, A. L. and Keener, J. P., Immersedinterface methods for Neumann and related problems in two and three dimensions, SIAM J. Sci. Comput., 22(5), 2001, 1630–1654.zbMATHCrossRefGoogle Scholar
  10. [10]
    Frierson, D. M. W. and Majda, A. J. and Pauluis, O. M., Largescale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit, Commun. Math. Sci., 2(4), 2004, 591–626.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Grabowski, W. W. and Smolarkiewicz, P. K., Two-time-level semi-Lagrangian modeling of precipitating clouds, Mon. Wea. Rev., 124(3), 1996, 487–497.CrossRefGoogle Scholar
  12. [12]
    Hernandez-Duenas, G., Majda, A. J., Smith, L. M. and Stechmann, S. N., Minimalmodels for precipitating turbulent convection, J. Fluid Mech., 717, 2013, 576–611.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Hoskins, B. J., McIntyre, M. E. and Robertson, A. W., Onthe use and significance of isentropic potential vorticity maps, Q. J. Roy. Met. Soc., 111(470), 1985, 877–946.CrossRefGoogle Scholar
  14. [14]
    Kalnay, E., Atmosphericmodeling, data assimilation and predictability, Cambridge University Press, Cambridge, 2003.Google Scholar
  15. [15]
    Kessler, E., Onthe distribution and continuity of water substance in atmospheric circulations, Number 32 in Meteorological Monographs. American Meteorological Society, Providence, 1969.CrossRefGoogle Scholar
  16. [16]
    Khouider, B., Majda, A. J. and Stechmann, S. N., Climatescience in the tropics: waves, vortices and PDEs, Nonlinearity, 26(1), 2013, R1–R68.zbMATHCrossRefGoogle Scholar
  17. [17]
    Klainerman, S. and Majda, A. J., Singularlimits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34(4), 1981, 481–524.zbMATHCrossRefGoogle Scholar
  18. [18]
    Klainerman, S. and Majda, A. J., Compressibleand incompressible fluids, Comm. Pure Appl. Math., 35(5), 1982, 629–651.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Klein, R. and Majda, A. J., Systematicmultiscale models for deep convection on mesoscales, Theor. Comp. Fluid Dyn., 20(5-6), 2006, 525–551.CrossRefGoogle Scholar
  20. [20]
    Kleist, D. T., Parrish, D. F., Derber, J. C, Treadon, R., Errico, R. M. and Yang, R., Improvingincremental balance in the GSI 3DVAR analysis system, Mon. Wea. Rev., 137(3), 2009, 1046–1060.CrossRefGoogle Scholar
  21. [21]
    Lackmann, G., MidlatitudeSynoptic Meteorology: Dynamics, Analysis, and Forecasting, American Meteorological Society, Providence, 2011.CrossRefGoogle Scholar
  22. [22]
    LeVeque, R. J., FiniteDifference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2007.zbMATHCrossRefGoogle Scholar
  23. [23]
    Leveque, R. J. and Li, Z., Theimmersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31(4), 1994, 1019–1044.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Li, Z., Anote on immersed interface method for three-dimensional elliptic equations, Comput. Math. Appl, 31(3), 1996, 9–17.MathSciNetCrossRefGoogle Scholar
  25. [25]
    Li, Z. and Ito, K., Maximumprinciple preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci. Comput., 23(1), 2001, 339–361.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Lipps, F. B., Hemler, R. S., Ascale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 39(10), 1982, 2192–2210.CrossRefGoogle Scholar
  27. [27]
    Liu, X.-D. and Fedkiw, R. P. and Kang, M., Aboundary condition capturing method for Poisson's equation on irregular domains, J. Comput. Phys., 160(1), 2000, 151–178.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Liu, X.-D. and Sideris, T., Convergenceof the ghost fluid method for elliptic equations with interfaces, Math. Comput., 72(244), 2003, 1731–1746.zbMATHCrossRefGoogle Scholar
  29. [29]
    Majda, A. J., CompressibleFluid Flow and Systems of Conservation Laws in Several Space Variables, volume 53 of Applied Mathematical Sciences, Springer-Verlag, New York, 1984.CrossRefGoogle Scholar
  30. [30]
    Majda, A. J., Introductionto PDEs and Waves for the Atmosphere and Ocean, Volume 9 of Courant Lecture Notes in Mathematics, American Mathematical Society, Providence, 2003.Google Scholar
  31. [31]
    Majda, A. J. and Embid, P., Averagingover fast gravity waves for geophysical flows with unbalanced initial data, Theor. Comput. Fluid Dyn., 11(3-4), 1998, 155–169.zbMATHCrossRefGoogle Scholar
  32. [32]
    Majda, A. J. and Harlim, J., FilteringTurbulent Complex Systems, Cambridge University Press, Cambridge, 2012.zbMATHGoogle Scholar
  33. [33]
    Majda, A. J. and Klein, R., Systematicmultiscale models for the Tropics, J. Atmos. Sci., 60(2), 2003, 393–408.CrossRefGoogle Scholar
  34. [34]
    Majda, A. J. and Souganidis, P. E., Existenceand uniqueness of weak solutions for precipitation fronts: A novel hyperbolic free boundary problem in several space variables, Coram. Pure Appl. Math., 63(10), 2010, 1351–1361.zbMATHCrossRefGoogle Scholar
  35. [35]
    Marshall, J. and Plumb, R. A., Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press, Boston, MA, 2007.Google Scholar
  36. [36]
    Martin, J. E., Mid-latitude Atmospheric Dynamics: A First Course, John Wiley & Sons, Chichester, 2006.Google Scholar
  37. [37]
    McTaggart-Cowan, R., Gyakum, J. R. and Yau, M. K., Moistcomponent potential vorticity, J. Atmos. Sci., 60(1), 2003, 166–177.CrossRefGoogle Scholar
  38. [38]
    Ogura, Y. and Phillips, N. A., Scaleanalysis of deep and shallow convection in the atmosphere, J. Atmos. Sei, 19(2), 1962, 173–179.CrossRefGoogle Scholar
  39. [39]
    Parrish, D. F. and Derber, J. C., The National Meteorological Center's spectral statistical-interpolation analysis system, Mon. Wea. Rev., 120(8), 1992, 1747–1763.CrossRefGoogle Scholar
  40. [40]
    Rogers, R. R. and Yau, M. K., AShort Course in Cloud Physics, Butterworth Heinemann, Burlington, 1989.Google Scholar
  41. [41]
    Schubert, W. H., Hausman, S. A., Garcia, M., Ooyama, K. V. and Kuo, H.-O, Potential vorticity in a moist atmosphere, J. Atmos. Sci., 58(21), 2001, 3148–3157.CrossRefGoogle Scholar
  42. [42]
    Skamarock, W. C, Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W. and Powers, J. G., Adescription of the Advanced Research WRF Version 3, NCAR/TN-475+STR, NCAR, 2008.Google Scholar
  43. [43]
    Smith, L. M. and Stechmann, S. N., Precipitatingquasigeostrophic equations and potential vorticity inversion with phase changes, J. Atmos. Sci., 74(10), 2017, 3285–3303.CrossRefGoogle Scholar
  44. [44]
    Stechmann, S. N. and Majda, A. J., Thestructure of precipitation fronts for finite relaxation time, Theor. Comp. Fluid Dyn., 20(5-6), 2006, 377–404.CrossRefGoogle Scholar
  45. [45]
    Stevens, B., Atmosphericmoist convection, Annu. Rev. Earth Planet. Sci., 33(1), 2005, 605–643.CrossRefGoogle Scholar
  46. [46]
    Trefethen, L. N. and Bau III, D., NumericalLinear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1997.Google Scholar
  47. [47]
    Tzou, C.-N. and Stechmann, S. N., Simplesecond-order finite differences for elliptic PDEs with discontinuous coefficients and interfaces, Coram. App. Math, and Comp. Sci., 14(2), 2019, 121–147.Google Scholar
  48. [48]
    Vallis, G. K., Atmosphericand Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation, Cambridge University Press, New York, 2006.CrossRefGoogle Scholar
  49. [49]
    Wetzel, A. N., Smith, L. M. and Stechmann, S. N., Moisturetransport due to baroclinic waves: Linear analysis of precipitating quasi-geostrophic dynamics, Math. Glim. Weather Forecast., 3(1), 2017, 28–50.Google Scholar
  50. [50]
    Zhou, Y.-S. and Zhu, K.-F. and Zhang, Z., Anomalyof the moist potential vorticity substance with mass forcing and its application in diagnosing Mei-yu front rainfall, Atmos. Ocean. Sci. Lett., 8(1), 2015, 39–44.Google Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Mathematics and Department of Engineering PhysicsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Mathematics and Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of Atmospheric and Oceanic SciencesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations