Chinese Annals of Mathematics, Series B

, Volume 40, Issue 4, pp 599–612 | Cite as

Sobolev Spaces on Quasi-Kähler Complex Varieties

  • Haisheng LiuEmail author


If V is an irreducible quasi-Kähler complex variety and E is a vector bundle over reg(V), the author proves that W 0 1,2 (reg(V), E) = W1,2(reg(V), E), and that for dim reg(V) > 1, the natural inclusion W1,2(reg(V), E) ↪ L2(reg(V), E) is compact, the natural inclusion \({W^{1,2}}\left( {{\rm{reg}}\left( V \right),\;E} \right)\hookrightarrow {L^{{{2v} \over {v - 1}}}}\left( {{\rm{reg}}\left( V \right),\;E} \right)\) is continuous.


Quasi-Kähler variety Sobolev spaces 

2000 MR Subject Classification

46E35 32W05 32Q99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author wants to express great thanks to Prof. Kefeng Liu for many useful discussions and comments.


  1. [1]
    Adams, R. A. and Fournier, J. J., Sobolev Spaces, 140, Academic Press, Elsevier, Amsterdam 2003.zbMATHGoogle Scholar
  2. [2]
    Akhiezer, N. I. and Glazman, I. M., Theory of linear operators in Hilbert space, Dover Publications, Inc., New York, 1993.zbMATHGoogle Scholar
  3. [3]
    Aubin, T., Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.CrossRefGoogle Scholar
  4. [4]
    Bei, F., Sobolev spaces and Bochner Laplacian on complex projective varieties and stratified pseudomani-folds, The Journal of Geometric Analysis, 27(1), 2017, 746–796.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Berline, N., Getzler, E. and Vergne, M., Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004.zbMATHGoogle Scholar
  6. [6]
    Chavel, I. and Feldman, E., Spectra of domains in compact manifolds, J. Funct. Anal., 30, 1978, 198–222.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Frohlicher, A., Zur differential geometrie der komplexen Strukturen, Math. Ann., 129, 1955, 50–95.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Grant, C. and Milman, P., Metrics for singular analytic spaces, Pacific J. Math., 168(1), 1995, 61–156.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Gray, A., Minimal varieties and almost Hermitian submanifolds, The Michigan Mathematical Journal, 12(3), 1965, 273–287.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Gray, A., Nearly Kahler manifolds, Journal of Differential Geometry, 4, 1970, 283–309.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Griffiths, P. and Harris, J., Principles of Algebraic Geometry, Wiley, New York, 1978.zbMATHGoogle Scholar
  12. [12]
    Grigor’yan, A., Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI, International Press, Boston, MA, 2009.zbMATHGoogle Scholar
  13. [13]
    Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. Math., 79, 1964, 109–326.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Li, P. and Tian, G., On the heat kernel of the Bergmann metric on algebraic varieties, J. Amer. Math. Soc., 8(4), 1995, 857–877.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Ma, X. and Marinescu, G., Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254, Birkhäuser Verlag, Basel, 2007.zbMATHGoogle Scholar
  16. [16]
    Michael, J. H. and Simon, L., Sobolev and mean-value inequalities on generalized submanifolds ofℝ n, Comm. Pure Appl. Math., 26, 1973, 361–379.MathSciNetCrossRefGoogle Scholar
  17. [17]
    Newlander, A. and Nirenberg, L., Complex analytic coordinates in almost complex manifolds, Ann. Math., 65, 1957, 391–404.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Reed, M. and Simon, B., Methods of Modern Mathematical Physics, I, Functional Analysis, Academic Press, New York, London, 1972.zbMATHGoogle Scholar
  19. [19]
    Reed, M. and Simon, B., Methods of Modern Mathematical Physics, II, Fourier Analysis, Academic Press, New York, London, 1975.zbMATHGoogle Scholar
  20. [20]
    Wehrheim, K., Uhlenbeck compactness, EMS Series of Lectures in Mathematics, European Mathematical Society, Zuärich, 2004.CrossRefGoogle Scholar
  21. [21]
    Yoshikawa, K. I., Degeneration of algebraic manifolds and te spetrum of Laplacian, Nagoya Math. J., 146, 1997, 83–120.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Center of Mathematical SciencesZhejiang UniversityHangzhouChina

Personalised recommendations