Chinese Annals of Mathematics, Series B

, Volume 40, Issue 4, pp 555–566 | Cite as

On Constacyclic Codes over \(\boldsymbol{Z}_{\boldsymbol{p}_{1}\boldsymbol{p}_{2}\cdots\boldsymbol{p}_{\boldsymbol{t}}}\)

  • Derong XieEmail author
  • Qunying LiaoEmail author


Let t ≥ 2 be an integer, and let p1, ⋯, pt be distinct primes. By using algebraic properties, the present paper gives a sufficient and necessary condition for the existence of non-trivial self-orthogonal cyclic codes over the ring \({Z_{{p_1}{p_2} \cdots {p_t}}}\) and the corresponding explicit enumerating formula. And it proves that there does not exist any self-dual cyclic code over \({Z_{{p_1}{p_2} \cdots {p_t}}}\).


Ideal Isomorphism Constacyclic code Self-orthogonal code Self-orthogonal cyclic code 

2000 MR Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berlekamp, E. R., Negacyclic Codes for the Lee Metric, Combinatorial Mathematics and Its Applications Proc. Conference, North Carolina Press, Chapel Hill, N.C., 1967.zbMATHGoogle Scholar
  2. [2]
    Blackford, T., Negacyclic codes over Z4 of even length, IEEE Trans. Inform. Theory, 2003, 49(6), 1417–1424.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Cao, Y. L., On constacyclic codes over finite chain rings, Finite Fields and Their Applications, 2013, 24, 124–135.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Dinh, H. Q., Constacyclic codes of length p s over \({F_{{p^m}}} + u{F_{{p^m}}}\), Journal of Algebra, 2010, 324(5), 940–950.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Dinh, H. Q., Wang, L. Q. and Zhu, S. X., Negacyclic codes of length 2p s over \({F_{{p^m}}} + u{F_{{p^m}}}\), Finite Fields and Their Applications, 2015, 31, 178–201.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Garrett, P., The Mathematics of Coding Theory, China Machine Press, Beijing, 2005.Google Scholar
  7. [7]
    Hammons, R., Kumar, P. V., Calderbank, A. R., et al., The Z 4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 1994, 40(2), 301–319.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Huffman, W. C. and Pless, V., Fundamentals of Error-Correcting Codes, Cambridge University Press, New York, 2003.CrossRefzbMATHGoogle Scholar
  9. [9]
    Jacobson, N., Basic Algebra I, W. H. Freeman and Company, New York, 1985.zbMATHGoogle Scholar
  10. [10]
    Jia, Y., Ling, S. and Xing, C. P., On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory, 2011, 57(4), 2243–2251.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Liao, Q. Y., Li, Y. B. and Liao, H., The existence for self-orthogonal cyclic codes over finite fields, Acta Mathematica Sinica, 2014, 57(1), 117–124.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Nechaev, A. A., Kerdock code in a cyclic form, Discrete Mathematics and Applications, 1991, 1(4), 365–384.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Pan, C. D. and Pan, C. B., Elementary Number Theory, Peking University Press, Beijing, 1992.Google Scholar
  14. [14]
    Prange, E., Cyclic Error-Correcting Codes in Two Symbols, Air Force Cambridge Research Center, Cambridge, 1957.Google Scholar
  15. [15]
    Zhu, S. X. and Kai, X. S., Dual and self-dual negacyclic codes of even length over \({Z_{{2^a}}}\), Discrete Mathematics, 2009, 309(8), 2382–2391.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.College of Mathematical ScienceSichuan Normal UniversityChengduChina

Personalised recommendations