Advertisement

Chinese Annals of Mathematics, Series B

, Volume 40, Issue 4, pp 541–554 | Cite as

Approximate Forward Attractors of Non-Autonomous Dynamical Systems

  • Xuewei Ju
  • Desheng Li
  • Chunqiu Li
  • Ailing QiEmail author
Article

Abstract

In this paper the forward asymptotical behavior of non-autonomous dynamical systems and their attractors are investigated. Under general conditions, the authors show that every neighborhood of pullback attractor has forward attracting property.

Keywords

Non-autonomous dynamical systems Pullback attractors Forward attractors Uniform attractors Approximate forward attractors 

2000 MR Subject Classification

37C60 37C70 37B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Caraballo, T., Kloeden, P. E. and Real, J., Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4, 2004, 405–423.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Caraballo, T., Márquez-Durán, A. M. and Real, J., Pullback and forward attractors for a 3D LANS-α model with delay, Discrete Contin. Dyn. Syst., 15, 2006, 559–578.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Carvalho, A. N., Langa, J. A., Robinson, J. C. and Suárez, A., Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Diff. Eqs., 236, 2007, 570–603.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Carvalho, A. N., Langa, J. A. and Robinson, J. C., Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer-Verlag, New York, 2013.CrossRefzbMATHGoogle Scholar
  5. [5]
    Chepyzhov, V. V., Uniform attractors of dynamical processes and non-autonomous equations of mathematical physis, Russian Math. Surveys, 68, 2013, 349–382.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Chepyzhov, V. V. and Vishik, M. I., Attractors of nonautonmous dynamical systems and their dimension, J. Math. Pures Appl., 73, 1994, 279–333.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Chepyzhov, V. V. and Vishik, M. I., Attractors of Equations of Mathematical Physics, Amer. Math. Soc., Providence, RI, 2002.zbMATHGoogle Scholar
  8. [8]
    Crauel, H., A uniformly exponential random forward attractor which is not a pullback attractor, Arch. Math., 78, 2002, 329–336.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Crauel, H., Debussche, A. and Flandoli, F., Random attractors, J. Dynam. Differential Equations, 9, 1997, 307–341.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Crauel, H. and Flandoli, F., Attractors for random dynamical systems, Probab. Theory Related Fields, 100, 1994, 365–393.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Grasselli, M. and Pata, V., Uniform attractors of nonautonomous dynamical systems with memory, Progr. Nonlinear Differential Equations Appl., 50, 2002, 155–178.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Langa, J. A., Bernal, A. R. and Suárez, A., On the long time behavior of non-autonomous Lotka-Volterra models with diffusion via the subsupertrajectory method, J. Diff. Eqs., 249, 2010, 414–445.CrossRefzbMATHGoogle Scholar
  13. [13]
    Langa, J. A., Robinson, J. C., Bernal, A. R., et al., Existence and nonexistence of unbounded forward attractor for a class of non-autonomous reaction diffusion equations, Discrete Contin. Dyn. Syst., 18, 2007, 483–497.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Langa, J. A., Robinson, J. C. and Suárez, A., Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system, Nonlinearity, 16, 2003, 1277–1293.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Li, D. S. and Kloeden, P. E., On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions, J. Diff. Eqs., 224, 2006, 1–38.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Rasmussen, M., Towards a bifurcation theory for non-autonomous difference equations, J. Difference Equ. Appl., 12, 2006, 297–312.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Rasmussen, M., Attractivity and Bifurcation for Non-Autonomous Dynamical Systems, Lecture Notes in Mathematics, 1907, Springer-Verlag, Berlin, Heidelberg, New York, 2007.Google Scholar
  18. [18]
    Sanjurjo, J. M. R., On the structure of uniform attractors, J. Math. Anal. Appl., 192(2), 1995, 519–528.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Vishik, M. I., Asymptotic Behavior of Solutions of Evolutionary Equations, Cambridge University Press, Cambriage, England, 1992.zbMATHGoogle Scholar
  20. [20]
    Wang, Y. J., Li, D. S. and Kloeden, P. E., On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Anal., 59, 2004, 35–53.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Wang, Y., Zhong, C. and Zhou, S., Pullback attractors of nonautonomous dynamical system, Discrete Contin. Dyn. Syst., 16, 2006, 586–614.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Wang, Y. and Zhou, S., Kernel sections and uniform attractors of multi-valued semiprocesses, J. Diff. Eqs., 232 (2), 2007, 573–622.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Zelik, S., Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces, Discrete Contin. Dyn. Syst. Ser. B, 5(3), 2015, 781–810.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Zhong, C. K., Li, D. S. and Kloeden, P. E., Uniform attractors of periodic and asymptotically periodic dynamical systems, Discrete Contin. Dyn. Syst., 12, 2005, 213–232.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Department of MathematicsCivil Aviation University of ChinaTianjinChina
  2. 2.Department of MathematicsTianjin UniversityTianjinChina

Personalised recommendations