Advertisement

Journal of Computer Science and Technology

, Volume 33, Issue 4, pp 863–872 | Cite as

A Gradient-Domain Based Geometry Processing Framework for Point Clouds

  • Hong-Xing Qin
  • Jin-Long He
  • Meng-Hui Wang
  • Yu Dai
  • Zhi-Yong Ran
Regular Paper
  • 45 Downloads

Abstract

The use of point clouds is becoming increasingly popular. We present a general framework for performing geometry filtering on point-based surface through applying the meshless local Petrol-Galelkin (MLPG) to obtain the solution of a screened Poisson equation. The enhancement or smoothing of surfaces is controlled by a gradient scale parameter. Anisotropic filtering is supported by the adapted Riemannian metric. Contrary to the other approaches of partial differential equation for point-based surface, the proposed approach neither needs to construct local or global triangular meshes, nor needs global parameterization. It is only based on the local tangent space and local interpolated surfaces. Experiments demonstrate the efficiency of our approach.

Keywords

point clouds processing partial differential equation meshless method gradient-domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11390_2018_1861_MOESM1_ESM.pdf (79 kb)
ESM 1 (PDF 78 kb)

References

  1. [1]
    Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva C T. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(1): 3-15.CrossRefGoogle Scholar
  2. [2]
    Fleishman S, Cohen-Or D, Silva C T. Robust moving least-squares fitting with sharp features. ACM Transactions on Graphics, 2005, 24(3): 544-552.CrossRefGoogle Scholar
  3. [3]
    Guennebaud G, Gross M. Algebraic point set surfaces. ACM Transactions on Graphics, 2007, 26(3): Article No. 23.Google Scholar
  4. [4]
    Oztireli A C, Guennebaud G, Gross M. Feature preserving point set surfaces based on non-linear kernel regression. Computer Graphics Forum, 2009, 28(2): 493-501.CrossRefGoogle Scholar
  5. [5]
    Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. ACM Transactions on Graphics, 2003, 22(3): 950-953.CrossRefGoogle Scholar
  6. [6]
    Qin H X, Yang J, Zhu Y. Nonuniform bilateral filtering for point sets and surface attributes. The Visual Computer, 2008, 24(12): 1067-1074.CrossRefGoogle Scholar
  7. [7]
    Lange C, Polthier K. Anisotropic smoothing of point sets. Computer Aided Geometric Design, 2005, 22(7): 680-692.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Clarenz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing. In Proc. the Conference on Visualization, Oct. 2000, pp.397-405.Google Scholar
  9. [9]
    Avron H, Sharf A, Greif C, Cohen-Or D. L 1-sparse reconstruction of sharp point set surfaces. ACM Transactions on Graphics, 2010, 29(5): Article No. 135.Google Scholar
  10. [10]
    Sun Y J, Schaefer S, Wang W P. Denoising point sets via L 0 minimization. Computer Aided Geometric Design, 2015, 35(C): 2-15.MathSciNetCrossRefGoogle Scholar
  11. [11]
    Lipman Y, Cohen-Or D, Levin D, Tal-Ezer H. Parameterization-free projection for geometry reconstruction. ACM Transactions on Graphics, 2007, 26(3): Article No. 22.Google Scholar
  12. [12]
    Huang H, Li D, Zhang H, Ascher U, Cohen-Or D. Consolidation of unorganized point clouds for surface reconstruction. ACM Transactions on Graphics, 2009, 28(5): Article No. 176.Google Scholar
  13. [13]
    Liao B, Xiao C, Jin L, Fu H. Efficient feature-preserving local projection operator for geometry reconstruction. Computer-Aided Design, 2013, 45(5): 861-874.CrossRefGoogle Scholar
  14. [14]
    Huang H, Wu S H, Gong M L, Cohen-Or D, Ascher U, Zhang H. Edge-aware point set resampling. ACM Transactions on Graphics, 2013, 32(1): Article No. 9.Google Scholar
  15. [15]
    Mattei E, Castrodad A. Point cloud denoising via moving RPCA. Computer Graphics Forum, 2017, 36(8): 123-137.CrossRefGoogle Scholar
  16. [16]
    Boulch A, Marlet R. Deep learning for robust normal estimation in unstructured point clouds. Computer Graphics Forum, 2016, 35(5): 281-290.CrossRefGoogle Scholar
  17. [17]
    Bhat P, Zitnick L C, Cohen M, Curless B. Gradientshop: A gradient-domain optimization framework for image and video filtering. ACM Transactions on Graphics, 2010, 29(2): Article No. 10.Google Scholar
  18. [18]
    Chuang M, Kazhdan M. Interactive and anisotropic geometry processing using the screened Poisson equation. ACM Transactions on Graphics, 2011, 30(4), Article No. 57.Google Scholar
  19. [19]
    Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H Y. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics, 2004, 23(3): 644-651.CrossRefGoogle Scholar
  20. [20]
    Atluri S, Zhu T. A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational mechanics, 1998, 22(2): 117-127.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Avron H, Sharf A, Greif C, Cohen-Or D. L 1-sparse reconstruction of sharp point set surfaces. ACM Transactions on Graphics, 2010, 29(5): Article No. 135.Google Scholar
  22. [22]
    Taubin G. A signal processing approach to fair surface design. In Proc. the 22nd Annual Conference on Computer Graphics and Interactive Techniques, October 1995, pp.351-358.Google Scholar
  23. [23]
    Desbrun M, Meyer M, Schrder P, Barr A H. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. the 26th Annual Conference on Computer Graphics and Interactive Techniques, August 1999, pp.317-324.Google Scholar
  24. [24]
    Nealen A, Igarashi T, Sorkine O, Alexa M. Laplacian mesh optimization. In Proc. the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, November 2006, pp.381-389.Google Scholar
  25. [25]
    Pauly M, Keiser R, Kobbelt L P, Gross M. Shape modeling with point-sampled geometry. ACM Transactions on Graphics, 2003, 22(3): 641-650.CrossRefGoogle Scholar
  26. [26]
    Pauly M, Kobbelt L P, Gross M. Point-based multiscale surface representation. ACM Transactions on Graphics, 2006, 25(2): 177-193.CrossRefGoogle Scholar
  27. [27]
    Clarenz U, Rumpf M, Telea A. Finite elements on point based surfaces. In Proc. the 1st Eurographics Conference on Point-Based Graphics, June 2004, pp.201-211.Google Scholar
  28. [28]
    Luo C J, Safa I, Wang Y. Approximating gradients for meshes and point clouds via diffusion metric. Computer Graphics Forum, 2009, 28(5): 1497-1508.CrossRefGoogle Scholar
  29. [29]
    Botsch M, Sorkine O. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(1): 213-230.CrossRefGoogle Scholar
  30. [30]
    Sorkine O. Differential representations for mesh processing. Computer Graphics Forum, 2006, 25(4): 789-807.CrossRefGoogle Scholar
  31. [31]
    Xu W W, Zhou K. Gradient domain mesh deformation —A survey. Journal of Computer Science and Technology, 2009, 24(1): 6-18.CrossRefGoogle Scholar
  32. [32]
    Kazhdan M, Hoppe H. Screened poisson surface reconstruction. ACM Transactions on Graphics, 2013, 32(3): Article No. 29.Google Scholar
  33. [33]
    Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M. Point based animation of elastic, plastic and melting objects. In Proc. the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, August 2004, pp.141-151.Google Scholar
  34. [34]
    Pauly M, Keiser R, Adams B, Dutré P, Gross M, Guibas L J. Meshless animation of fracturing solids. ACM Transactions on Graphics, 2005, 24(3): 957-964.CrossRefGoogle Scholar
  35. [35]
    Guo X, Li X, Bao Y, Gu X, Qin H. Meshless thin-shell simulation based on global conformal parameterization. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(3): 375-385.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hong-Xing Qin
    • 1
  • Jin-Long He
    • 1
  • Meng-Hui Wang
    • 1
  • Yu Dai
    • 1
  • Zhi-Yong Ran
    • 1
  1. 1.College of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqingChina

Personalised recommendations