Advertisement

Computation of minimum contact forces of multifingered robot hand with soft fingertips

  • 484 Accesses

  • 2 Citations

Abstract

In the human hand, the softness of a fingertip plays a significant role on stable grasping and dexterous manipulation. This paper presents a method of computing minimum grasp forces of a multi-fingered hand with soft fingertips. In the first, we built up a simple linear contact model of a soft fingertip. Then, based on Pontryagin’s principle, the problem of minimizing contact forces for realizing the stable grasping was formulated and the forces were computed. Finally, the experiments were carried out using a multifingered robot hand, called “Allegro Hand” with hard fingertips and soft ones, and the effectiveness of the proposed method was validated.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Grebenstein M, Chalon M, Hirzinger G, Siegwart R (2010) Antagonistically driven finger design for the anthropomorphic DLR hand arm system. In: IEEE-RAS International Conference on Humanoid Robots. IEEE, pp 609–616. doi:10.1109/ICHR.2010.5686342

  2. 2.

    Kaneko K, Harada K, Kanehiro F (2007) Development of multi-fingered hand for life-size humanoid robots. In: 2007 IEEE International Conference on Robotics and Automation. IEEE, pp 913–920. doi:10.1109/ROBOT.2007.363102

  3. 3.

    Niehues T, Badger J, Diftler M, Deshpande AD (2014) Cartesian-space control and dextrous manipulation for multi-fingered tendon-driven hand. In: IEEE International Conference on Robotics and Automation. IEEE, pp 6777–6783. doi:10.1109/ICRA.2014.6907860

  4. 4.

    Bernardino A, Henriques M, Hendrich N, Zhang J (2013) Precision grasp synergies for dexterous robotic hands. In: Proceeding of the IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp 62–67. doi:10.1109/ROBIO.2013.6739436

  5. 5.

    Tahara K, Maruta K, Yamamoto M (2010) External sensorless dynamic object manipulation by a dual soft-fingered robotic hand with torsional fingertip motion. In: IEEE International Conference on Robotics and Automation. IEEE, pp 4309–4314. doi:10.1109/ROBOT.2010.5509816

  6. 6.

    Tahara K, Arimoto S, Yoshida M (2010) Dynamic object manipulation using a virtual frame by a triple soft-Fingered robotic hand. In: IEEE International Conference on Robotics and Automation. IEEE, pp 4322–4327. doi:10.1109/ROBOT.2010.5509372

  7. 7.

    Sugiyama S, Koeda M, Fujimoto H, Yoshikawa T (2009) Measurement of grasp position by human hands and grasp criterion for two soft-fingered robot hands. In: IEEE International Conference on Robotics and Automation. IEEE, pp 2487–2492. doi:10.1109/ROBOT.2009.5152358

  8. 8.

    Nakashima A, Hayakawa Y (2009) Stability analysis of grasped object by soft-fingers with 3-dimensional deformation based on moment stability. In: IEEE Conference on Decision and Control. IEEE, pp 8192–8199. doi:10.1109/CDC.2009.5399750

  9. 9.

    Cutkosky Mark R, Kao I (1989) Computing and controlling compliance of a robotic hand. IEEE Trans Robot Autom 5:151–165. doi:10.1109/70.88036

  10. 10.

    Goyal S, Ruina A, Papadopoulos J (1991) Planar sliding with dry friction: part 1. Limit surface and moment function and part 2. Dynamics of motion. Wear 143:307–352. doi:10.1016/0043-1648(91)90104-3

  11. 11.

    Inoue T, Hirai S (2009) Parallel-distributed model of soft fingertips in three-dimensional grasping and manipulation. In: Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics. IEEE, pp 895–902. doi:10.1109/ROBIO.2009.4913118

  12. 12.

    García-Rodríguez R, Díaz-Rodríguez G (2011) Grasping and dynamic manipulation by soft finger-tips without object information. In: IEEE International Conference on Control and Automation. IEEE, pp 766–771. doi:10.1109/ICCA.2011.6138052

  13. 13.

    Harada K, Tsuji T, Uto S et al (2014) Stability of soft-finger grasp under gravity. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 883–888. doi:10.1109/ICRA.2014.6906958

  14. 14.

    Boudaoud M, Haddab Y, Gorrec YL (2013) Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE/ASME Trans Mechatron 18:1130–1139. doi:10.1109/TMECH.2012.2197216

  15. 15.

    Al-Gallaf EM (2010) A learning rule-based robotics hand optimal force closure. In: 2010 Second International Conference on Computational Intelligence, Communication Systems and Networks. IEEE, pp 60–66. doi:10.1109/CICSyN.2010.57

  16. 16.

    Phoka T, Niparnan N, Sudsang A (2006) Planning optimal force-closure grasps for curved objects by genetic algorithm. In: 2006 IEEE Conference on Robotics, Automation and Mechatronics. IEEE, pp 1–6. doi:10.1109/RAMECH.2006.252683

  17. 17.

    Xia Y, Feng G (2008) Real-time optimal control of force distribution using a neural dynamical approach. In: Proceedings of the 2008 IEEE International Conference on Information and Automation. IEEE, pp 1576–1579. doi:10.1109/ICINFA.2008.4608254

  18. 18.

    Song SK, Park JB, Choi YH (2012) Dual-fingered stable grasping control for an optimal force angle. IEEE Trans Robot 28:256–262. doi:10.1109/TRO.2011.2168151

  19. 19.

    Morita Y, Okada H, Ukai H et al (1998) Optimal force control of elastic robot with contact motion to environment. In: 1998 5th International Workshop on Advanced Motion Control. IEEE, pp 228–233. doi:10.1109/AMC.1998.743541

  20. 20.

    Ruppel T, Sawodny O, Osten W (2010) Actuator placement for minimum force modal control of continuous faceplate deformable mirrors. In: 2010 IEEE International Conference on Control Applications. IEEE, pp 867–872. doi:10.1109/CCA.2010.5611311

  21. 21.

    Kim BH, Yi BJ, Oh SR (2004) Non-dimensionalized performance indices based optimal grasping for multi-fingered hands. Mechatronics 14:255–280. doi:10.1016/S0957-4158(03)00039-4

  22. 22.

    Zheng Y, Lin MC, Manocha D (2012) On computing reliable optimal grasping forces. IEEE Trans Robot 28:619–633. doi:10.1109/TRO.2012.2183057

  23. 23.

    Nakamura Y (1988) Minimizing object strain energy for coordination of multiple robotic mechanisms. In: American Control Conference. IEEE, pp 499–509

  24. 24.

    Boyd SP, Wegbreit B (2007) Fast computation of optimal contact forces. IEEE Trans Robot 23:1117–1132. doi:10.1109/TRO.2007.910774

  25. 25.

    Lippiello V, Siciliano B, Villani L (2011) Online dextrous-hand grasping force optimization with dynamic torque constraints selection. In: IEEE International Conference on Robotics and Automation. IEEE, pp 2831–2836. doi:10.1109/ICRA.2011.5979674

  26. 26.

    Inoue T, Hirai S (2006) Elastic model of deformable fingertip for soft-fingered manipulation. IEEE Trans Robot 22:1273–1279. doi:10.1109/TRO.2006.886274

  27. 27.

    Yamawaki T, Yashima M (2011) Grasp planning based on dynamics shaping. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, pp 617–622. doi:10.1109/AIM.2011.6027063

Download references

Acknowledgments

This research was supported by the convergence technology development program for bionic arm through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2014M3C1B2048175). The first author was financially supported by the State Scholarship Fund, organized by the China Scholarship Council (CSC).

Author information

Correspondence to Hyouk Ryeol Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 48434 KB)

Supplementary material 2 (mpg 50158 KB)

Supplementary material 3 (mpg 85842 KB)

Supplementary material 1 (mpg 48434 KB)

Supplementary material 2 (mpg 50158 KB)

Supplementary material 3 (mpg 85842 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Kim, Y.B., Yee, G.K. et al. Computation of minimum contact forces of multifingered robot hand with soft fingertips. Intel Serv Robotics 8, 225–232 (2015) doi:10.1007/s11370-015-0178-x

Download citation

Keywords

  • Multifingered robot hand
  • Soft fingertip
  • Minimum contact forces
  • Contact model