Advertisement

Investigating the use of fallout and geogenic radionuclides as potential tracing properties to quantify the sources of suspended sediment in a mining catchment in New Caledonia, South Pacific

  • Virginie SellierEmail author
  • Oldrich Navratil
  • J. Patrick Laceby
  • Michel Allenbach
  • Irène Lefèvre
  • Olivier Evrard
Sediments, Sec 3 • Hillslope and River Basin Sediment Dynamics • Research Article
  • 23 Downloads

Abstract

Purpose

New Caledonia, a French island located in the south-west Pacific Ocean, has vast nickel resources. Open-cast mining has strongly increased soil erosion and the subsequent downstream transfer of sediments in river systems resulting in fundamental morphological changes (e.g., hyper-sedimentation, over-burden). Understanding the sediment source contributions from mining activities is therefore important to guide the implementation of effective management measures.

Materials and methods

A pilot sediment tracing study was conducted in the Thio River (400 km2) catchment draining the island’s first mine. Sediment deposited during the February 25, 2015, and April 10, 2017, flood events was collected with a tributary tracing design, including main stem (n = 19) and tributary (n = 24) samples. The tributaries were classified into two source types: sub-catchments draining mining sites and sub-catchments devoid of mining activities. Three sets of potential tracing parameters (i.e., fallout radionuclides, geogenic radionuclides, and elemental geochemistry) were examined for their potential to model the contributions of sediment from mining versus non-mining tributaries to sediment collected on the Thio River.

Results and discussion

The very low fallout radionuclide activities (137Cs and 210Pbxs) found in the source and sediment samples demonstrate that most material transiting the river network is derived from subsoil sources. Geogenic radionuclides and elemental geochemistry were therefore utilized in the tributary tracing approach. Accordingly, U and K were selected as the optimal tracers of the two main lithological regions supplying sediment to the main stem of the Thio River. Model results demonstrated that tributaries with mining activity dominated the sediment supply to the Thio River with mean sediment contributions of 68% (SD 28%) for the 2015 flood and 86% (SD 7%) for the 2017 event.

Conclusions

Geogenic radionuclides and elemental geochemistry were more effective at discriminating between tributaries with and without mines than fallout radionuclides. The similarity of the model results from tracing with geogenic radionuclides and elemental geochemistry illustrates their potential to investigate sediment source contributions in similar catchments across the South Pacific Islands affected by mining activities.

Keywords

Cesium-137 Nickel mining Sediment source fingerprinting Soil erosion X-ray fluorescence 

Notes

Funding information

This work was supported by the National Technical Research Center (CNRT) “Nickel and its environment,” Noumea, New Caledonia (n°10PS2013-CNRT.UNC/IMMILA). Virginie Sellier received a PhD fellowship from the French Atomic Energy Commission (CEA, Commissariat à l’Energie Atomique et aux Energies Alternatives).

Supplementary material

11368_2019_2447_MOESM1_ESM.docx (263 kb)
ESM 1 (DOCX 263 kb)

References

  1. Aalto R, Nittrouer CA (2012) 210Pb geochronology of flood events in large tropical river systems. Philos Trans A Math Phys Eng Sci 370:2040–2074CrossRefGoogle Scholar
  2. Alric R (2009) Recueil des débits caractéristiques de la Nouvelle Calédonie. In: Direction des Affaires Vétérinaires Alimentaires et Rurales (DAVAR), Service de l'eau des statistiques et études rurales. Observatoire de la ressource en eau NouméaGoogle Scholar
  3. Batista PVG, Laceby JP, Silva MLN, Tassinari D, Bispo DFA, Curi N, Davies J, Quinton JN (2019) Using pedological knowledge to improve sediment source apportionment in tropical environments. J Soils Sediments 19:3274–3289CrossRefGoogle Scholar
  4. Bird ECF, Dubois JP, Iltis JA (1984) The impacts of opencast mining on the rivers and coasts of New Caledonia. United Nations University, TokyoGoogle Scholar
  5. Blake WH, Wallbrink PJ, Wilkinson SN, Humphreys GS, Doerr SH, Shakesby RA, Tomkins KM (2009) Deriving hillslope sediment budgets in wildfire-affected forests using fallout radionuclide tracers. Geomorphology 104:105–116CrossRefGoogle Scholar
  6. Bottrill L, Walling D, Leeks G (1999) Geochemical characteristics of overbank deposits and their potential for determining suspended sediment provenance; an example from the River Severn, UK. Geol Soc Lond, Spec Publ 163:241–257CrossRefGoogle Scholar
  7. Brown A, Carpenter R, Walling D (2008) Monitoring the fluvial palynomorph load in a lowland temperate catchment and its relationship to suspended sediment and discharge. Hydrobiologia 607:27–40CrossRefGoogle Scholar
  8. Collins AL, Walling DE, Leeks GJL (1996) Composite fingerprinting of the spatial source of fluvial suspended sediment: a case study of the Exe and Severn river basins, United Kingdom. Géomorphologie 2:41–53CrossRefGoogle Scholar
  9. Danloux J, Laganier R (1991) Classification et quantification des phénomènes d'érosion, de transport et de sédimentation sur les bassins touchés par l'exploitation minière en Nouvelle CalédonieGoogle Scholar
  10. David G, Leopold M, Dumas PS, Ferraris J, Herrenschmidt JB, Fontenelle G (2010) Integrated coastal zone management perspectives to ensure the sustainability of coral reefs in New Caledonia. Mar Pollut Bull 61:323–334CrossRefGoogle Scholar
  11. Davis CM, Fox JF (2009) Sediment fingerprinting: review of the method and future improvements for allocating nonpoint source pollution. J Environ Eng 135:490–504CrossRefGoogle Scholar
  12. Dumas P, Printemps J, Mangeas M, Luneau G (2010) Developing erosion models for integrated coastal zone management: a case study of the New Caledonia west coast. Mar Pollut Bull 61:519–529CrossRefGoogle Scholar
  13. Evrard O, Laceby JP, Huon S, Lefèvre I, Sengtaheuanghoung O, Ribolzi O (2016) Combining multiple fallout radionuclides (137Cs, 7Be, 210Pbxs) to investigate temporal sediment source dynamics in tropical, ephemeral riverine systems. J Soils Sediments 16:1130–1144CrossRefGoogle Scholar
  14. Evrard O, Laceby JP, Ficetola GF, Gielly L, Huon S, Lefèvre I, Onda Y, Poulenard J (2019) Environmental DNA provides information on sediment sources: a study in catchments affected by Fukushima radioactive fallout. Sci Total Environ 665:873–881CrossRefGoogle Scholar
  15. Ficetola GF, Poulenard J, Sabatier P, Messager E, Gielly L, Leloup A, Etienne D, Bakke J, Malet E, Fanget B (2018) DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Sci Adv 4:eaar4292CrossRefGoogle Scholar
  16. Foucher A, Laceby PJ, Salvador-Blanes S, Evrard O, Le Gall M, Lefèvre I, Cerdan O, Rajkumar V, Desmet M (2015) Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: the application of a thorium-based particle size correction in sediment fingerprinting. Geomorphology 250:271–281CrossRefGoogle Scholar
  17. Garcin M (2010) Exploitation des granulats en lit vif des cours d’eau de la Grande-Terre, Nouvelle-Calédonie. BRGM/RP-58531-FR. 114 p., 90 fig., 3 tabl. Bureau des Recherches Géologiques et MinièresGoogle Scholar
  18. Garcin M, Gastaldi Y, Lesimple S (2017) Quantification et évolution temporelle des apports miniers dans les rivières calédoniennes. BRGM/RP-66840-FR, 44 p., 23 fig., 5. Bur Rech Géol Min MémGoogle Scholar
  19. Haddadchi A, Ryder DS, Evrard O, Olley J (2013) Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models. Int J Sediment Res 28:560–578CrossRefGoogle Scholar
  20. Hancock GJ, Wilkinson SN, Hawdon AA, Keen RJ (2014) Use of fallout tracers 7Be, 210Pb and 137Cs to distinguish the form of sub-surface soil erosion delivering sediment to rivers in large catchments. Hydrol Process 28:3855–3874CrossRefGoogle Scholar
  21. Hedouin L, Pringault O, Metian M, Bustamante P, Warnau M (2007) Nickel bioaccumulation in bivalves from the New Caledonia lagoon: seawater and food exposure. Chemosphere 66:1449–1457CrossRefGoogle Scholar
  22. Hedouin L, Bustamante P, Fichez R, Warnau M (2008) The tropical brown alga Lobophora variegata as a bioindicator of mining contamination in the New Caledonia lagoon: a field transplantation study. Mar Environ Res 66:438–444CrossRefGoogle Scholar
  23. Heintz T, Haapkyla J, Gilbert A (2015) Coral health on reefs near mining sites in New Caledonia. Dis Aquat Org 115:165–173.  https://doi.org/10.3354/dao02884 CrossRefGoogle Scholar
  24. IEOM (2016) Rapport d’activité 2016 de la Nouvelle-Calédonie. Institut d'Emission Outre-MerGoogle Scholar
  25. Koiter AJ, Owens PN, Petticrew EL, Lobb DA (2013) The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth-Sci Rev 125:24–42CrossRefGoogle Scholar
  26. Krause A, Franks S, Kalma J, Loughran R, Rowan J (2003) Multi-parameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia. Catena 53:327–348CrossRefGoogle Scholar
  27. Laceby JP, Olley J (2015) An examination of geochemical modelling approaches to tracing sediment sources incorporating distribution mixing and elemental correlations. Hydrol Process 29:1669–1685CrossRefGoogle Scholar
  28. Laceby JP, McMahon J, Evrard O, Olley J (2015) A comparison of geological and statistical approaches to element selection for sediment fingerprinting. J Soils Sediments 15:2117–2131CrossRefGoogle Scholar
  29. Laceby JP, Evrard O, Smith HG, Blake WH, Olley JM, Minella JPG, Owens PN (2017) The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: a review. Earth-Sci Rev 169:85–103CrossRefGoogle Scholar
  30. Laceby JP, Gellis AC, Koiter AJ, Blake WH, Evrard O (2019) Preface evaluating the response of critical zone processes to human impacts with sediment source fingerprinting. J Soils Sediments 19:3245–3254CrossRefGoogle Scholar
  31. Le Gall M, Evrard O, Foucher A, Laceby JP, Salvador-Blanes S, Thil F, Dapoigny A, Lefevre I, Cerdan O, Ayrault S (2016) Quantifying sediment sources in a lowland agricultural catchment pond using (137)Cs activities and radiogenic (87)Sr/(86)Sr ratios. Sci Total Environ 566-567:968–980CrossRefGoogle Scholar
  32. Le Gall M, Evrard O, Foucher A, Laceby JP, Salvador-Blanes S, Maniere L, Lefevre I, Cerdan O, Ayrault S (2017) Investigating the temporal dynamics of suspended sediment during flood events with 7Be and 210Pbxs measurements in a drained lowland catchment. Sci Rep 7:42099.  https://doi.org/10.1038/srep42099 CrossRefGoogle Scholar
  33. Legout C, Poulenard J, Nemery J, Navratil O, Grangeon T, Evrard O, Esteves M (2013) Quantifying suspended sediment sources during runoff events in headwater catchments using spectrocolorimetry. J Soils Sediments 13:1478–1492CrossRefGoogle Scholar
  34. Martínez-Carreras N, Udelhoven T, Krein A, Gallart F, Iffly JF, Ziebel J, Hoffmann L, Pfister L, Walling DE (2010) The use of sediment colour measured by diffuse reflectance spectrometry to determine sediment sources: application to the Attert River catchment (Luxembourg). J Hydrol 382:49–63CrossRefGoogle Scholar
  35. Mertes LA (1994) Rates of flood-plain sedimentation on the Central Amazon River. Geology 22:171–174CrossRefGoogle Scholar
  36. Nyman P, Sheridan GJ, Smith HG, Lane PNJ (2011) Evidence of debris flow occurrence after wildfire in upland catchments of south-East Australia. Geomorphology 125:383–401CrossRefGoogle Scholar
  37. Olley J, Caitcheon G (2000) Major element chemistry of sediments from the Darling–Barwon river and its tributaries: implications for sediment and phosphorus sources. Hydrol Process 14:1159–1175CrossRefGoogle Scholar
  38. Olley J, Brooks A, Spencer J, Pietsch T, Borombovits D (2013) Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia. J Environ Radioact 124:121–129CrossRefGoogle Scholar
  39. Owens PN, Walling DE (2002) The phosphorus content of fluvial sediment in rural and industrialized river basins. Water Res 36:685–701CrossRefGoogle Scholar
  40. Owens PN, Walling DE, Carton J, Meharg AA, Wright J, Leeks GJL (2001) Downstream changes in the transport and storage of sediment-associated contaminants (P, Cr and PCBs) in agricultural and industrialized drainage basins. Sci Total Environ 266:177–186CrossRefGoogle Scholar
  41. Pascal N (2010) Ecosystèmes coralliens de Nouvelle-Calédonie Valeur économique des services écosystémiques Partie I: Valeur financière. IFRECOR Nouvelle-Calédonie, Nouméa 155Google Scholar
  42. Pascal M, De Forges BR, Le Guyader H, Simberloff D (2008) Mining and other threats to the New Caledonia biodiversity hotspot. Conserv Biol 22:498–499CrossRefGoogle Scholar
  43. Restrepo JD, Park E, Aquino S, Latrubesse EM (2016) Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia. Sci Total Environ 553:316–329CrossRefGoogle Scholar
  44. Rogers CS (1979) The effect of shading on coral reef structure and function. J Exp Mar Biol Ecol 41:269–288CrossRefGoogle Scholar
  45. Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202CrossRefGoogle Scholar
  46. Sabinot C, Lacombe S (2015) La pêche en tribu face à l’industrie minière dans le sud-est de la Nouvelle-Calédonie. In: Rev. Société Int. D'Ethnographie 5, La mer et les Hommes. pp 120–137Google Scholar
  47. Schwertmann U, Latham M (1986) Properties of iron oxides in some New Caledonian oxisols. Geoderma 39:105–123CrossRefGoogle Scholar
  48. Sevin B (2014) Cartographie du régolithe sur formation ultrabasique de Nouvelle-Calédonie: Localisation dans l’espace et le temps des gisements nickélifères. Nouvelle CalédonieGoogle Scholar
  49. Shellberg J, Brooks A, Spencer J (2010) Land-use change from indigenous management to cattle grazing initiates the gullying of alluvial soils in northern Australia. In: 19th World Congress of Soil Science: Soil Solutions for a Changing World, pp 1–6Google Scholar
  50. Sherriff SC, Franks SW, Rowan JS, Fenton O, Ó’hUallacháin D (2015) Uncertainty-based assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment fingerprinting using synthetic and field data. J Soils Sediments 15:2101–2116CrossRefGoogle Scholar
  51. Smith HG, Sheridan GJ, Lane PNJ, Noske PJ, Heijnis H (2011) Changes to sediment sources following wildfire in a forested upland catchment, southeastern Australia. Hydrol Process 25:2878–2889CrossRefGoogle Scholar
  52. Smith HG, Sheridan GJ, Nyman P, Child DP, Lane PNJ, Hotchkis MAC, Jacobsen GE (2012) Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers. Geomorphology 139-140:403–415CrossRefGoogle Scholar
  53. Stout JC, Belmont P, Schottler SP, Willenbring JK (2013) Identifying sediment sources and sinks in the root river, southeastern Minnesota. Ann Assoc Am Geogr 104:20–39CrossRefGoogle Scholar
  54. Terry JP, Garimella S, Kostaschuk RA (2002) Rates of floodplain accretion in a tropical island river system impacted by cyclones and large floods. Geomorphology 42:171–182CrossRefGoogle Scholar
  55. Terry JP, Kostaschuk RA, Wotling G (2008) Features of tropical cyclone-induced flood peaks on Grande Terre, New Caledonia. Water Environ J 22:177–183CrossRefGoogle Scholar
  56. Trescases JJ (1973) Weathering and geochemical behaviour of the elements of ultramafic rocks in New Caledonia. BMRJ Aust Geol Geophys 141:149–161Google Scholar
  57. Wallbrink P, Murray A, Olley J, Olive L (1998) Determining sources and transit times of suspended sediment in the Murrumbidgee River, New South Wales, Australia, using fallout 137Cs and 210Pb. Water Resour Res 34:879–887CrossRefGoogle Scholar
  58. Walling DE (2005) Tracing suspended sediment sources in catchments and river systems. Sci Total Environ 344:159–184CrossRefGoogle Scholar
  59. Walling DE (2013) The evolution of sediment source fingerprinting investigations in fluvial systems. J Soils Sediments 13:1658–1675CrossRefGoogle Scholar
  60. Walling D, Peart M, Oldfield F, Thompson R (1979) Suspended sediment sources identified by magnetic measurements. Nature 281:110–113CrossRefGoogle Scholar
  61. Walling DE, Owens PN, Carter J, Leeks GJL, Lewis S, Meharg AA, Wright J (2003) Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Appl Geochem 18:195–220CrossRefGoogle Scholar
  62. Wilkinson SN, Hancock GJ, Bartley R, Hawdon AA, Keen RJ (2013) Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia. Agric Ecosyst Environ 180:90–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire des Sciences du Climat et de l’Environnement (LSCE), UMR 8212 (CEA/CNRS/UVSQ-IPSL)Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.Laboratoire Environnement-Ville-Société (EVS), UMR 5600/IRGUniversité Lumière Lyon 2LyonFrance
  3. 3.Environmental Monitoring and Science Division (EMSD)Alberta Environment and Parks (AEP)CalgaryCanada
  4. 4.LIVE-EA 4243Université de Nouvelle-CalédonieNouméaFrance
  5. 5.LABEXCorailFrance

Personalised recommendations