Using spectrocolourimetry to trace sediment source dynamics in coastal catchments draining the main Fukushima radioactive pollution plume (2011–2017)

  • Olivier EvrardEmail author
  • Roxanne Durand
  • Anthony Foucher
  • Tales Tiecher
  • Virginie Sellier
  • Yuichi Onda
  • Irène Lefèvre
  • Olivier Cerdan
  • J. Patrick Laceby
Sediment Fingerprinting in the Critical Zone



Spectrocolourimetric measurements provide a relatively inexpensive, quick and non-destructive alternative to the analysis of geochemical and organic matter properties. When used in the analysis of sediments and their potential sources, these colour parameters may provide important information on the dominant processes (i.e. erosion) occurring in the Critical Zone. Here, they are used to investigate whether eroded sediment is derived from forest (i.e. natural), cultivated (i.e. anthropogenic) or subsoil sources in order to assess their potential to monitor the effect of decontamination in regions impacted by fallout from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident.

Materials and methods

Fifteen spectrocolourimetric properties (L*, a*, b*, C*, h, x, y, z, L, a, b, u*, v*, u’, v’) were measured in potential source (n = 37) and sediment (n = 400) samples collected during 13 campaigns from 2011 to 2017 after major flood events in two catchments (total surface area of 450 km2) draining the main FDNPP radioactive pollution plume. Potential sources included topsoil from forest and cultivated sources along with subsoil material originating from landslides, channel banks and the decontamination of cultivated areas. The optimum set of parameters used in the mixed linear model to calculate the sediment source contributions was obtained through the use of a range test, the Kruskal–Wallis H test and a linear discriminant analysis.

Results and discussion

Nine selected colour parameters correctly classified 100% of the source samples (i.e. forest, subsoil and cultivated sources). The results illustrate that cultivated landscapes were the main source of sediment to these river systems (mean 56%, SD 34%) followed by subsoil (mean 26%, SD 16%) and forest sources (mean 21%, SD 24%). However, these contributions varied strongly over time, with a peak of subsoil contributions (mean 57%, SD 17%) in Fall 2015, coinciding with the occurrence of a typhoon after the remediation works. These results were consistent with monitoring studies conducted in the same area that showed the major impact of typhoon Etau in September 2015 on sediment and radiocaesium fluxes.


These original results demonstrate that spectrocolourimetric measurements may contribute to the routine monitoring of the effectiveness of remediation works in this post-accidental context. Owing to the inexpensive, rapid and non-destructive analyses, spectrocolourimetric-based tracing methods have significant potential to provide information on the dominant erosion processes occurring in the Critical Zone.


Colour FDNPP Radiocaesium Sediment fingerprinting Soil erosion Spectroscopy 



This work has been supported by the French National Research Agency (ANR) in the framework of the TOFU (ANR-11-JAPN-001) and AMORAD (ANR-11-RSNR-0002) projects. The assistance of Jeremy Patin, Philippe Bonté, Caroline Chartin, Hugo Lepage, Hugo Jaegler and Rosalie Vandromme for fieldwork and/or labwork was greatly appreciated.


  1. Brosinsky A, Foerster S, Segl K, López-Tarazón JA, Piqué G, Bronstert A (2014) Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information. J Soils Sediments 14:1965–1981CrossRefGoogle Scholar
  2. Chartin C, Evrard O, Onda Y, Patin J, Lefèvre I, Ottlé C, Ayrault S, Lepage H, Bonté P (2013) Tracking the early dispersion of contaminated sediment along rivers draining the Fukushima radioactive pollution plume. Anthropocene 1:23–34CrossRefGoogle Scholar
  3. Chartin C, Evrard O, Laceby JP, Onda Y, Ottlé C, Lefèvre I, Cerdan O (2017) The impact of typhoons on sediment connectivity: lessons learnt from contaminated coastal catchments of the Fukushima Prefecture (Japan). Earth Surf Process Landf 42:306–317CrossRefGoogle Scholar
  4. CIE C (1978) Publication no. 15, supplement number 2 (E-1.3. 1, 1971) official recommendations on uniform color spaces, color-difference equations, and metric color terms. Commission Internationale de L’Eclairage, ParisGoogle Scholar
  5. CIE CUPC (1931) Commission internationale de l’eclairage proceedings. Cambridge University Press, CambridgeGoogle Scholar
  6. Dabrin A, Schäfer J, Bertrand O, Masson M, Blanc G (2014) Origin of suspended matter and sediment inferred from the residual metal fraction: application to the Marennes Oleron Bay, France. Cont Shelf Res 72:119–130CrossRefGoogle Scholar
  7. Debret M, Sebag D, Desmet M, Balsam W, Copard Y, Mourier B, Susperrigui AS, Arnaud F, Bentaleb I, Chapron E, Lallier-Vergès E, Winiarski T (2011) Spectrocolorimetric interpretation of sedimentary dynamics: the new “Q7/4 diagram”. Earth-Sci Rev 109:1–19CrossRefGoogle Scholar
  8. Douglas G, Palmer M, Caitcheon G (2003) The provenance of sediments in Moreton Bay, Australia: a synthesis of major, trace element and Sr-Nd-Pb isotopic geochemistry, modelling and landscape analysis, The interactions between sediments and water. Springer, pp 145–152Google Scholar
  9. Evrard O, Poulenard J, Némery J, Ayrault S, Gratiot N, Duvert C, Prat C, Lefèvre I, Bonté P, Esteves M (2013) Tracing sediment sources in a tropical highland catchment of central Mexico by using conventional and alternative fingerprinting methods. Hydrol Process 27:911–922CrossRefGoogle Scholar
  10. Evrard O, Laceby JP, Lepage H, Onda Y, Cerdan O, Ayrault S (2015) Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: a review. J Environ Radioact 148:92–110CrossRefGoogle Scholar
  11. Evrard O, Laceby JP, Onda Y, Wakiyama Y, Jaegler H, Lefèvre I (2016) Quantifying the dilution of the radiocesium contamination in Fukushima coastal river sediment (2011–2015). Sci Rep 6:34828CrossRefGoogle Scholar
  12. Evrard O, Laceby JP, Ficetola GF, Gielly L, Huon S, Lefèvre I, Onda Y, Poulenard J (2019) Environmental DNA provides information on sediment sources: a study in catchments affected by Fukushima radioactive fallout. Sci Total Environ 665:873–881CrossRefGoogle Scholar
  13. Fan Q, Yamaguchi N, Tanaka M, Tsukada H, Takahashi Y (2014) Relationship between the adsorption species of cesium and radiocesium interception potential in soils and minerals: an EXAFS study. J Environ Radioact 138C:92–100CrossRefGoogle Scholar
  14. Fukushima Prefecture (2019) Rainfall and river monitoring (in Japanese). Accessed 3 Feb 2019
  15. Garzon-Garcia A, Laceby JP, Olley JM, Bunn SE (2017) Differentiating the sources of fine sediment, organic matter and nitrogen in a subtropical Australian catchment. Sci Total Environ 575:1384–1394CrossRefGoogle Scholar
  16. Grimshaw D, Lewin J (1980) Source identification for suspended sediments. J Hydrol 47:151–162CrossRefGoogle Scholar
  17. Haddadchi A, Ryder DS, Evrard O, Olley J (2013) Sediment fingerprinting in fluvial systems: review of tracers, sediment sources and mixing models. J Sediment Res 28:560–578CrossRefGoogle Scholar
  18. Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856CrossRefGoogle Scholar
  19. He Q, Walling D (1996) Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J Environ Radioact 30:117–137CrossRefGoogle Scholar
  20. Huon S, Hayashi S, Laceby JP, Tsuji H, Onda Y, Evrard O (2018) Source dynamics of radiocesium-contaminated particulate matter deposited in an agricultural water reservoir after the Fukushima nuclear accident. Sci Total Environ 612:1079–1090CrossRefGoogle Scholar
  21. JAEA (2019) Database for radioactive substance monitoring data (in English). Japan Atomic Energy Agency. Accessed 3 Feb 2019.
  22. Kato H, Onda Y, Teramage M (2012) Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. J Environ Radioact 111:59–64CrossRefGoogle Scholar
  23. Kinoshita N, Sueki K, Sasa K, Kitagawa J, Ikarashi S, Nishimura T, Wong YS, Satou Y, Handa K, Takahashi T, Sato M, Yamagata T (2011) Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc Natl Acad Sci U S A 108:19526–19529CrossRefGoogle Scholar
  24. Laceby JP, McMahon J, Evrard O, Olley J (2015) A comparison of geological and statistical approaches to element selection for sediment fingerprinting. J Soils Sediments 15:2117–2131CrossRefGoogle Scholar
  25. Laceby JP, Chartin C, Evrard O, Onda Y, Garcia-Sanchez L, Cerdan O (2016a) Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident. Hydrol Earth Syst Sci 20:2467–2482CrossRefGoogle Scholar
  26. Laceby JP, Huon S, Onda Y, Vaury V, Evrard O (2016b) Do forests represent a long-term source of contaminated particulate matter in the Fukushima Prefecture? J Environ Manag 183:742–753CrossRefGoogle Scholar
  27. Laceby JP, Evrard O, Smith HG, Blake WH, Olley JM, Minella JPG, Owens PN (2017) The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: a review. Earth-Sci Rev 169:85–103CrossRefGoogle Scholar
  28. Le Gall M, Evrard O, Dapoigny A, Tiecher T, Zafar M, Minella JPG, Laceby JP, Ayrault S (2017) Tracing sediment sources in a subtropical agricultural catchment of southern Brazil cultivated with conventional and conservation farming practices. Land Degrad Dev 28:1426–1436CrossRefGoogle Scholar
  29. Legout C, Poulenard J, Nemery J, Navratil O, Grangeon T, Evrard O, Esteves M (2013) Quantifying suspended sediment sources during runoff events in headwater catchments using spectrocolorimetry. J Soils Sediments 13:1478–1492CrossRefGoogle Scholar
  30. Lepage H, Evrard O, Onda Y, Chartin C, Lefevre I, Sophie A, Bonte P (2014) Tracking the origin and dispersion of contaminated sediments transported by rivers draining the Fukushima radioactive contaminant plume. IAHS-AISH Proceedings and Reports 367:237–243Google Scholar
  31. Lepage H, Evrard O, Onda Y, Lefèvre I, Laceby JP, Ayrault S (2015) Depth distribution of cesium-137 in paddy fields across the Fukushima pollution plume in 2013. J Environ Radioact 147:157–164CrossRefGoogle Scholar
  32. Lepage H, Laceby JP, Bonté P, Joron J-L, Onda Y, Lefèvre I, Ayrault S, Evrard O (2016) Investigating the source of radiocesium contaminated sediment in two Fukushima coastal catchments with sediment tracing techniques. Anthropocene 13:57–68CrossRefGoogle Scholar
  33. Martínez-Carreras N, Krein A, Gallart F, Iffly JF, Pfister L, Hoffmann L, Owens PN (2010a) Assessment of different colour parameters for discriminating potential suspended sediment sources and provenance: a multi-scale study in Luxembourg. Geomorphology 118:118–129CrossRefGoogle Scholar
  34. Martínez-Carreras N, Krein A, Udelhoven T, Gallart F, Iffly JF, Hoffmann L, Pfister L, Walling DE (2010b) A rapid spectral-reflectance-based fingerprinting approach for documenting suspended sediment sources during storm runoff events. J Soils Sediments 10:400–413CrossRefGoogle Scholar
  35. Minella JPG, Walling DE, Merten GH (2008) Combining sediment source tracing techniques with traditional monitoring to assess the impact of improved land management on catchment sediment yields. J Hydrol 348:546–563CrossRefGoogle Scholar
  36. Navas A, Lopez-Vicente M, Gaspar L, Palazon L, Quijano L (2014) Establishing a tracer-based sediment budget to preserve wetlands in Mediterranean mountain agroecosystems (NE Spain). Sci Total Environ 496:132–143CrossRefGoogle Scholar
  37. Osawa K, Nonaka Y, Nishimura T, Tanoi K, Matsui H, Mizogichi M, Tatsuno T (2018) Quantification of dissolved and particulate radiocesium fluxes in two rivers draining the main radioactive pollution plume in Fukushima, Japan (2013–2016). Anthropocene 22:40–50CrossRefGoogle Scholar
  38. Owens PN, Batalla RJ, Collins AJ, Gomez B, Hicks DM, Horowitz AJ, Kondolf GM, Marden M, Page MJ, Peacock DH, Petticrew EL, Salomons W, Trustrum NA (2005) Fine-grained sediment in river systems: environmental significance and management issues. River Res Appl 21:693–717CrossRefGoogle Scholar
  39. Owens PN, Blake WH, Gaspar L, Gateuille D, Koiter AJ, Lobb DA, Petticrew EL, Reiffarth DG, Smith HG, Woodward JC (2016) Fingerprinting and tracing the sources of soils and sediments: earth and ocean science, geoarchaeological, forensic, and human health applications. Earth-Sci Rev 162:1–23CrossRefGoogle Scholar
  40. Poulenard J, Perrette Y, Fanget B, Quetin P, Trevisan D, Dorioz JM (2009) Infrared spectroscopy tracing of sediment sources in a small rural watershed (French Alps). Sci Total Environ 407:2808–8219CrossRefGoogle Scholar
  41. Poulenard J, Legout C, Némery J, Bramorski J, Navratil O, Douchin A, Fanget B, Perrette Y, Evrard O, Esteves M (2012) Tracing sediment sources during floods using Diffuse Reflectance Infrared Fourier Transform Spectrometry (DRIFTS): a case study in a highly erosive mountainous catchment (Southern French Alps). J Hydrol 414-415:452–462CrossRefGoogle Scholar
  42. Pulley S, Rowntree K (2016) The use of an ordinary colour scanner to fingerprint sediment sources in the South African Karoo. J Environ Manag 165:253–262CrossRefGoogle Scholar
  43. Smith HG, Blake WH (2014) Sediment fingerprinting in agricultural catchments: a critical re-examination of source discrimination and data corrections. Geomorphology 204:177–191CrossRefGoogle Scholar
  44. Strunk N (1992) Case studies of variations in suspended matter transport in small catchments, sediment/water interactions. Springer, pp 247–255Google Scholar
  45. Takahashi J, Onda Y, Hihara D, Tamura K (2018) Six-year monitoring of the vertical distribution of radiocesium in three forest soils after the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 192:172–180CrossRefGoogle Scholar
  46. Thothong W, Huon S, Janeau J-L, Boonsaner A, de Rouw A, Planchon O, Bardoux G, Parkpian P (2011) Impact of land use change and rainfall on sediment and carbon accumulation in a water reservoir of North Thailand. Agric Ecosyst Environ 140:521–533CrossRefGoogle Scholar
  47. Tiecher T, Caner L, Minella JP, dos Santos DR (2015) Combining visible-based-color parameters and geochemical tracers to improve sediment source discrimination and apportionment. Sci Total Environ 527(528):135–149CrossRefGoogle Scholar
  48. Viscarra Rossel RA, Minasny B, Roudier P, McBratney AB (2006) Colour space models for soil science. Geoderma 133:320–337CrossRefGoogle Scholar
  49. Walling DE (2013) The evolution of sediment source fingerprinting investigations in fluvial systems. J Soils Sediments 13:1658–1675CrossRefGoogle Scholar
  50. Yasutaka T, Naito W (2016) Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan. J Environ Radioact 151:512–520CrossRefGoogle Scholar
  51. Yoshimura K, Onda Y, Kato H (2014) Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots. J Environ Radioact 139:362–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Unité Mixte de Recherche 8212 (CEA/CNRS/UVSQ)Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.Department of Soil ScienceFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Center for Research in Isotopes and Environmental Dynamics (CRIED)University of TsukubaTsukubaJapan
  4. 4.Bureau de Recherches Géologiques et Minières (BRGM), DRP/RIGOrléansFrance
  5. 5.Environmental Monitoring and Science Division (EMSD)Alberta Environment and Parks (AEP)CalgaryCanada

Personalised recommendations