Journal of Soils and Sediments

, Volume 19, Issue 5, pp 2558–2569 | Cite as

Lanthanides and yttrium in the sediments of the lower Minho River (NW Iberian Peninsula): imprint of tributaries

  • Ricardo PregoEmail author
  • Pedro Brito
  • Miguel Ángel Álvarez-Vázquez
  • Miguel Caetano
Sediments, Sec 1 • Sediment Quality and Impact Assessment • Research Article



Rare earth elements have been used as sediment tracers in river, estuarine and coastal environments but rarely applied as fluvial tributary tracers. Lanthanides (Ln) and yttrium (Y) were quantified in fluvial sediments of the Minho River lower course (NW Iberian Peninsula), where the catchment contains heterogeneous lithologies, to define the characteristic imprints of tributaries and their relevance in the riverine system.

Materials and methods

Surface sediments were sampled at 36 points in the lower Minho riverbed and its nine main tributaries.The < 2-mm fraction was sieved and ground, and ≈ 100 mg was completely acid-digested with HF and aqua regia in closed Teflon bombs at 100 °C for 1 h. The residue was evaporated, re-dissolved with HNO3 and Milli-Q water, heated 20 min at 75 °C and diluted to 50 cm3 with Milli-Q water. Lanthanides and yttrium were determined using a quadrupole ICP-MS equipped with a Peltier impact bead spray chamber and a concentric Meinhard nebuliser. Blanks accounted for less than 1% of the element concentrations in the samples. The precision and accuracy of the analytical procedures were controlled through reference materials AGV-1 and MAG-1.

Results and discussion

Contents ranged from 22 to 153 mg Ln kg−1 and 1.5–22.9 mg Y kg−1 and ES-normalised light-heavy Ln fractionation, (LN/HN), varied between 0.6 and 2.6. These wide ranges, together with Eu and Ce anomalies and element-by-element Ln, varied with changes in parental rocks of the lower Minho basin. Minho sediments showed negative Ce anomalies (0.81 ± 0.29) and positive Eu anomalies (1.23 ± 0.18). Sediments received traces of granitic pegmatites and gneissic peralkaline rocks from two tributaries: the Gadanha (22.9 mg Y kg−1; 83 mg Ln kg−1; 0.60 LN/HN; 0.51 Eu/Eu*; 0.88 Ce/Ce*) and the Louro (15.9 mg Y kg−1; 110 mg Lnkg−1; 0.97 LN/HN; 0.69 Eu/Eu*; 1.49 Ce/Ce*). The Tamuxe tributary, flowing through a slate and quartzite fault, provided the lowest source (1.6 mg Y kg−1; 28 mg Ln kg−1; 2.48 LN/HN; 1.01 Eu/Eu*; 0.55 Ce/Ce*).


Lanthanide and Y signatures in sediments may be used to trace land-tributary-river influences. The imprints are observed downstream of fluvial confluences but not in all cases, responding to basin lithological changes, particularly for pegmatites and peralkaline rocks. The general REE trend is described using Y contents only. Tributaries, which are responsible for one-fifth of the Minho water load, provide one-half of their sediments. Non-homogeneous sediment patterns may be magnified in dammed rivers such as the Minho.


Minho River Rare earth elements Sediment Tracer Tributary 



We thank to Alexis Rodríguez Jiménez (student of the University of Costa Rica) for his help making Fig.1, and the valuable comments by the anonymous reviewers.

Funding information

This study was supported by the REEuse research project, ref. PTDC/QEQ-EPR/1249/2014financed by the Portuguese “Fundação para a Ciência e Tecnologia” and the “Xunta de Galicia” for the ‘Support to Competitive Reference Groups’ ref. IN607A-2016/11.

Supplementary material

11368_2019_2271_MOESM1_ESM.doc (77 kb)
ESM 1 (DOC 77 kb)
11368_2019_2271_MOESM2_ESM.doc (28 kb)
ESM 2 (DOC 28 kb)
11368_2019_2271_MOESM3_ESM.doc (84 kb)
ESM 3 (DOC 84 kb)


  1. Albarede F, Sehmi K (1995) Patterns of elemental transport in the bedload of the Meurthe River (NE France). Chem Geol 122:129–145CrossRefGoogle Scholar
  2. Bao Z, Zhao Z (2008) Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol Rev 33:519–535CrossRefGoogle Scholar
  3. Bau M, Schmidt K, Pack A, Bendel V, Kraemer D (2018) The European shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe. Appl Geochem 90:142–149CrossRefGoogle Scholar
  4. Bayon G, Toucanne S, Skonieczny C, André L, Bermell S, Cheron S, Dennielou B, Etoubleau J, Freslon N, Gauchery T, Germain Y, Jorry S, Ménot G, Monin L, Ponzevera E, Rouget ML, Tachikawa K, Barrat JA (2015) Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim Cosmochim Acta 170:17–38CrossRefGoogle Scholar
  5. Belli P, Bernabei R, Cappella F, Cerulli R, Dai CJ, Danevich FA, d'Angelo A, Incicchitti A, Kobychev VV, Nagorny SS, Nisi S, Nozzoli F, Prosperi D, Tretyak VI, Yurchenko SS (2007) Search for α decay of natural europium. Nucl Phys A 789:15–29CrossRefGoogle Scholar
  6. Caetano M, Prego R, Vale C, dePablo H, Marmolejo-Rodríguez J (2009) Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment. Mar Chem 116:36–46CrossRefGoogle Scholar
  7. Chaillou G, Anschultz P, Lavaux G, Blanc G (2006) Rare earth elements in the modern sediments of the Biscay (France). Mar Chem 100:39–52CrossRefGoogle Scholar
  8. Cullers RL, Graf JL (1984) Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rock-ore petrogenesis. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 275–316CrossRefGoogle Scholar
  9. Dang TH, Coynel A, Orange D, Blanc G, Etcheber H, Le LA (2010) Long-term monitoring (1960–2008) of the river-sediment transport in the Red River watershed (Vietnam): temporal variability and dam-reservoir impact. Sci Total Environ 408:4654–4664CrossRefGoogle Scholar
  10. Davranche M, Gruau G, Dia A, Marsac R, Pédrot M, Pourret O (2015) Biogeochemical factors affecting rare earth element distribution in shallow wetland groundwater. Aquat Geochem 21:197–215CrossRefGoogle Scholar
  11. ErcitTS (2005) REE-enriched granitic pegmatitesin: LinnenRL, SamsonIM (eds) Rare-element geochemistry and mineral deposits.Geol Assoc Can, Short Course Notes17:175–199Google Scholar
  12. Fedele L, Plant JA, De Vivo B, Lima A (2008) The rare earth element distribution over Europe: Geogenic and anthropogenic sources. Geochem Explor Env A 8:3–18CrossRefGoogle Scholar
  13. FleetAJ (1983) Aqueous and sedimentary geochemistry of the rare earth elements. In: HendersonP (ed) Rare earth element geochemistry, vol.2. Elsevier, pp 343–373Google Scholar
  14. Floor P (1966) Petrology of an aegirine-riebeckite gneiss-bearing part of the Hesperian massif: the Galiñeiro and surrounding areas. Vigo Spain Leidse Geologische Mededelingen 36:1–204Google Scholar
  15. Gouveia MA, Araújo MFD, Dias JMA (1993) Rare earth element distribution in sediments from the Minho river and estuary (Portugal) – a preliminary study. Chem Geol 107:379–383CrossRefGoogle Scholar
  16. Hanson SL, Simmons WB, Webber KL, Falster AU (1992) Rare-earth-element minerology of granitic pegmatites in the Trout Creek Pass district, Chaffee County. Colorado Can Mineral 30:673–686Google Scholar
  17. Holser WT (1997) Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeogr Palaeoclimatol Palaeoecol 132:309–323CrossRefGoogle Scholar
  18. Hu Z, Gao S (2008) Upper crustal abundances of trace elements: a revision and update. Chem Geol 253:205–211CrossRefGoogle Scholar
  19. Kuss J, Garbe-Schonberg CD, Kremling K (2001) Rare earth elements in suspended particulate material of North Atlantic surface waters. Geochim Cosmochim Acta 65:187–199CrossRefGoogle Scholar
  20. Lawrence MG, Greig A, Collerson KD, Kamber BS (2006) Rare earth element and yttrium variability in South East Queensland waterways. Aquat Geochem 12:39–72CrossRefGoogle Scholar
  21. Leybourne M, Johannesson K (2008) Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: fractionation, speciation, and controls over REE + Y patterns in the surface environment. Geochim Cosmochim Acta 72:5962–5983CrossRefGoogle Scholar
  22. Liu YG, Cheng Y, Zhang L, Zhang C, Zheng C (2015) Provenance discrimination of surface sediments using rare earth elements in the Yalu River estuary, China. Environ Earth Sci 74:3507–3517CrossRefGoogle Scholar
  23. Llana-Fúñez S (2001) La estructura de la unidad Malpica-Tui. Publicaciones del Instituto Geológico y Minero de España, MadridGoogle Scholar
  24. Marmolejo-Rodríguez AJ, Prego R, Meyer-Willerer A, Shumilin E, Sapozhnikov D (2007) Rare earth elements in iron oxy-hydroxide rich sediments from the Marabasco river-estuary system (Pacific coast of Mexico). REE affinity with iron and aluminium. J Geochem Explor 94:43–51CrossRefGoogle Scholar
  25. Marmolejo-Rodríguez AJ, Caetano M, DePablo H, Vale C, Prego R (2008) Yttrium in the Vigo Ria (NW Iberian Peninsula): sources, distribution and background levels. Cien Mar 34:339–406CrossRefGoogle Scholar
  26. McLennanSM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary process. In: Lipin BR, McKay (eds) Geochemistry and mineralogy of rare earth elements. Rev Mineral21:169–200Google Scholar
  27. McLennan, S. M. (2018) Lanthanide rare earths. In: WhiteWM (ed) Encyclopedia of geochemistry, 2nd Ed. Springer-Verlag. doi:
  28. Montero P, Floor P, Corretgé G (1998) The accumulation of rare-earth and high field strength elements in peralkaline granitic rocks: the Galiñeiro orthogneissic complex. Northwestern Spain Can Mineral 35:683–700Google Scholar
  29. Moreno J, Fatela F, Andrade C, Cascalho J, Moreno F, Drago T (2005) Living foraminiferal assemblages from the Minho and Coura estuaries (Northern Portugal): a stressful environment. Thalassas 21:17–28Google Scholar
  30. Murad E (1978) Yttrium and zirconium as geochemical guide elements in soil and stream sediment sequences. Eur J Soil Sci 29:219–223CrossRefGoogle Scholar
  31. Olmez I, Sholkovitz ER, Hermann D, Eganhouse RP (1991) Rare earth elements in sediments off southern California: a new anthropogenic indicator. Environ Sci Technol 25:310–316CrossRefGoogle Scholar
  32. Pérez-López R, Nieto JM, de la Rosa JD, Bolívar JP (2015) Environmental tracers for elucidating the weathering process in a phosphogypsum disposal site: implications for restoration. J Hydrol 529:1313–1323CrossRefGoogle Scholar
  33. Piper DZ (1974) Rare earth elements in the sedimentary cycle: a summary. Chem Geol 14:285–304CrossRefGoogle Scholar
  34. Pourret O, Tuduri J (2017) Continental shelves as potential resource of rare earth elements. Sci Rep 7:5857CrossRefGoogle Scholar
  35. Prego R, Caetano M, Vale C, Marmolejo-Rodriguez J (2009) Rare earth elements in sediments of the Vigo Ria, NW Iberian Peninsula. Cont Shelf Res 29:896–902CrossRefGoogle Scholar
  36. Prego R, Caetano M, Bernárdez P, Brito P, Ospina-Alvarez N, Vale C (2012) Rare earth elements in coastal sediments of the northern Galician shelf: influence of geological features. Cont Shelf Res 35:75–85CrossRefGoogle Scholar
  37. Ramesh R, Ramanathan AL, Ramesh S, Purvaja R, Subramanian V (2000) Distribution of rare earth elements in the surficial sediments of the Himalaya river system. Geochem J 34:295–319CrossRefGoogle Scholar
  38. Rantala RTT, Loring DH (1975) Multi-element analysis of silicate rocks and marine sediments by atomic absorption spectrophotometry. At Absorpt Newsletter 14:117–120Google Scholar
  39. Río-Barja FJ, Rodríguez-Lestegás F (1992) Os ríos galegos. Morfoloxía e Réxime. Concello da Cultura Galega, Santiago de CompostelaGoogle Scholar
  40. Romero-Freire A, Minguez L, Pelletier M, Cayer A, Caillet C, Devin S, Gross EM, Guérold F, Pain-Devin S, Vignati DAL, Giamberini L (2018) Assessment of baseline ecotoxicity of sediments from a prospective mining area enriched in light rare earth elements. Sci Total Environ 612:831–839CrossRefGoogle Scholar
  41. Ronov AB, Balashov YA, Migdisov AA (1967) Geochemistry of the rare earths in the sedimentary cycle. Geochem Int 4:1–17Google Scholar
  42. SGP (1989) Serviços Geológicos de Portugal, Direcção Geral de Geologia e Minas, Ministério da Indústria e Energia. Carta Geológica de Portugal - Folha 1 (scale)1/200000)Google Scholar
  43. Sholkovitz E, Szymczak R (2000) The estuarine chemistry of rare earth elements: comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems. Earth Planet Sci Lett 179:299–309CrossRefGoogle Scholar
  44. Sholkovitz ER, Landing WM, Lewis BL (1994) Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta 58:1567–1579CrossRefGoogle Scholar
  45. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, BostonGoogle Scholar
  46. Xu Z, Lim D, Choi J, Yang S, Jung H (2009) Rare earth elements in bottom sediments of major rivers around the Yellow Sea: implications for sediment provenance. Geo-Mar Lett 29:291–300CrossRefGoogle Scholar
  47. Yang SL, Xu KH, Milliman JD, Yang HF, Wu CS (2015) Decline of Yangtze River water and sediment discharge: impact from natural and anthropogenic changes. Nat Sci Rep 5:12581CrossRefGoogle Scholar
  48. ZepfV (2013) Rare earth elements: What and where they are. In: Rare earth elements. Chap.2, Springer ThesesGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones Marinas (IIM-CSIC)VigoSpain
  2. 2.Portuguese Institute of Sea and Atmosphere (IPMA)LisbonPortugal

Personalised recommendations