Advertisement

Bioremediation of soil contaminated by hydrocarbons with the combination of three technologies: bioaugmentation, phytoremediation, and vermiremediation

  • Jacobo Rodriguez-CamposEmail author
  • Andrea Perales-Garcia
  • Janett Hernandez-Carballo
  • Froylan Martinez-Rabelo
  • Benito Hernández-Castellanos
  • Isabelle Barois
  • Silvia Maribel Contreras-RamosEmail author
Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • 43 Downloads

Abstract

Purpose

The aim of this study was to evaluate the removal of total petroleum hydrocarbons (TPH), alkanes and polycyclic aromatic hydrocarbons (PAH).

Materials and methods

Using phytoremediation (Panicum maximum) (G), vermiremediation (Pontoscolex corethrurus) (E), and bioaugmentation (encapsulated bacterial consortium) (B), individually and in combination, in contaminated soil by oil (PS) with sterilized (St) and non-sterilized treatments. Grass and earthworm biomass and the number of cocoons were determined after 112 days.

Results and discussion

The biomass of the P. maximum increased significantly from 1.7 to 2.6-folds overtime when it was cultivated in contaminated soil, either alone, in combination with earthworms, or with the bacterial consortium. After 112 days, the earthworm biomass significantly increased 2.0–2.6-folds with the highest increase in combination with the bacterial (PS+E+B), and its population increased from 4.9 to 8.5 times. P. corethrurus was not affected by the contamination so that deposition and hatch of cocoons (12–20) were observed. In sterilized treatments, no earthworms were detected after 112 days, which indicated that soil microorganisms are necessary for the earthworm’s survival and colonization. Most alkane and PAH removal occurred within 28 days; at 112 days, the alkane was 78.5–94.5% and the PAH 54.5–77.2% in non-sterilized soil. Panicum maximum treatment (SP+G) removed 74–99% of alkanes from C10 to C38 and also removed PAHs in 43–50% (2–3 rings), 46–90% (4 rings), 73% (5 rings), and 59% (6 rings) after 112 days. The combination of the grass with P. corethrurus and the bacterial increased the PAHs removal of 2 and 3 rings (54–62%), 4 rings (56–92%), 5 rings (80%), and 6 rings (70%) after 112 days. In non-sterilized treatments, the highest TPH removal was with earthworms plus bacterial (E+B) (86.4%), followed by E+G+B (82.7%) and B (82.6%).

Conclusions

The use of endogeic earthworms and plants species from the same contaminated field can be an efficient alternative for increasing hydrocarbon removal.

Keywords

Encapsulated bacterial consortium Oil contamination P. corethrurus Panicum maximum 

Notes

Acknowledgments

Authors thank Teresa Mejía-Saulés and Miguel Jesús Cházaro-Basáñez for the grass taxonomic identification.

Funding information

This research had financial support from “Consejo Nacional de Ciencia y Tecnología” (CONACYT) Mexico through project 247619. The author F. Martínez-Rabelo received a grant from CONACYT (611559) to complete this research.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation, and bioaugmention: a review. Int J Environ Bioremediation Biodegrad 3:28–39Google Scholar
  2. Aguilera C (1980) Algunos datos sobre el chapopote en las fuentes documentales del siglo. Estud Cult Náhuatl Mex 4:335–343Google Scholar
  3. Ben Salem F, Ben Said O, Duran R, Monperrus M (2016) Validation of an adapted QuEChERS method for the simultaneous analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in sediment by gas chromatography–mass spectrometry. Bull Environ Contam Toxicol 96:678–684CrossRefGoogle Scholar
  4. Berns AE, Philipp H, Narres H-D et al (2008) Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur J Soil Sci 59:540–550CrossRefGoogle Scholar
  5. Buch AC, Brown GG, Niva CC et al (2011) Life cycle of Pontoscolex corethrurus (Müller, 1857) in tropical artificial soil. Pedobiologia (Jena) 54:S19–S25CrossRefGoogle Scholar
  6. CCME (2008) Canadian soil quality guidelines carcinogenic and other polycyclic aromatic hydrocarbons (PAHs) - scientific supporting document. Canadian Council of Ministers of the EnvironmentGoogle Scholar
  7. Cébron A, Faure P, Lorgeoux C et al (2013) Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: consequences on biodegradation. Environ Pollut 177:98–105CrossRefGoogle Scholar
  8. Chachina SB, Voronkova NA, Baklanova ON (2015) Biological remediation of the engine lubricant oil-contaminated soil with three kinds of earthworms, Eisenia fetida, Eisenia andrei Dendrobena veneta, and a mixture of microorganisms. In: Procedia Engineering. pp 113–123Google Scholar
  9. Chaudhuri PS, Pal TK, Nath S, Dey SK (2012) Effects of five earthworm species on some physicochemical properties of soil. J Environ Biol 33:713–716Google Scholar
  10. Chen F, Tan M, Ma J et al (2016) Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study. J Hazard Mater 302:250–261CrossRefGoogle Scholar
  11. Cofield N, Banks MK, Schwab AP (2008) Liability of polycyclic aromatic hydrocarbons in the rhizosphere. Chemosphere 70:1644–1652CrossRefGoogle Scholar
  12. Couto MNPFS, Monteiro E, Vasconcelos MTSD (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res 17:1339–1346CrossRefGoogle Scholar
  13. Couto MNPFS, Pinto D, Basto MCP, Vasconcelos TSD (2012) Role of natural attenuation, phytoremediation and hybrid technologies in the remediation of a refinery soil with old/recent petroleum hydrocarbons contamination. Environ Technol 33:2097–2104CrossRefGoogle Scholar
  14. Cuevas-Díaz M d C, Vázquez-Luna D, Martínez-Hernández S et al (2017) Sensitivity of the eEndogeic tropical earthworm Pontoscolex corethrurus to the presence of heavy crude oil. Bull Environ Contam Toxicol 99:154–160CrossRefGoogle Scholar
  15. Cvetkovic JS, Mitic VD, Stankov Jovanovic VP et al (2016) Optimization of the QuEChERS extraction procedure for the determination of polycyclic aromatic hydrocarbons in soil by gas chromatography-mass spectrometry. Anal Methods 8:1711–1720.  https://doi.org/10.1039/C5AY03248B CrossRefGoogle Scholar
  16. Dzionek A, Wojcieszyńska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36CrossRefGoogle Scholar
  17. Eilen AV, Gijsbert B, Terje F (1999) Guidelines for the risk assessment of contaminated sites. Norwegian Pollution Control AuthorityGoogle Scholar
  18. Ekperusi OA, Aigbodion FI (2015a) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech 5:957–965CrossRefGoogle Scholar
  19. Ekperusi OA, Aigbodion IF (2015b) Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. Springerplus 4:540.  https://doi.org/10.1186/s40064-015-1328-5 CrossRefGoogle Scholar
  20. Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549CrossRefGoogle Scholar
  21. García-Sánchez M, Košnář Z, Mercl F et al (2018) A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol Environ Saf 147:165–174CrossRefGoogle Scholar
  22. García-Segura D, Castillo-Murrieta IM, Martínez-Rabelo F et al (2018) Macrofauna and mesofauna from soil contaminated by oil extraction. Geoderma 332:180–189CrossRefGoogle Scholar
  23. Gardi C, Angelini M, S. Barceló et al (2014) Atlas de suelos de América Latina y el Caribe. Comisión Europea. - Oficina de Publicaciones de la Unión Europea, L-2995, LuxembourgGoogle Scholar
  24. Gkorezis P, Daghio M, Franzetti A et al (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836CrossRefGoogle Scholar
  25. Guarino C, Spada V, Sciarrillo R (2017) Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation – assistited landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170:10–16CrossRefGoogle Scholar
  26. Hernández-Castellanos B, Zavala-Cruz J, Martínez-Hernández S et al (2013) Earthworm populations in an aged hydrocarbon contaminated soil. Res J Environ Sci 7:27–37CrossRefGoogle Scholar
  27. INEGI (2017) Guía para la Interpretación de Cartografía Edafología. http://www.inegi.org.mx. Accessed 20 Jul 2010
  28. Kelsey JW, Slizovskiy IB, Peters RD, Melnick AM (2010) Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p,p′-DDE and anthracene by earthworms. Environ Pollut 158:2251–2257CrossRefGoogle Scholar
  29. Khorshid M, Souaya ER, Hamzawy AH, Mohammed MN (2015) QuEChERS method followed by solid phase extraction method for gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbons in fish. Int J Anal Chem 2015:352610Google Scholar
  30. Kumar A (2005) Vermis & Vermitechnology. S.B. Nangia & A. P. H. Publishing Corporation, New DelhiGoogle Scholar
  31. Kuppusamy S, Thavamani P, Venkateswarlu K et al (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968CrossRefGoogle Scholar
  32. Larsen T, Pollierer MM, Holmstrup M et al (2016) Substantial nutritional contribution of bacterial amino acids to earthworms and enchytraeids: a case study from organic grasslands. Soil Biol Biochem 99:21–27CrossRefGoogle Scholar
  33. Lavelle P, Barois I, Cruz I et al (1987) Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Fertil Soils 5:188–194CrossRefGoogle Scholar
  34. Lavelle P, Spain A, Blouin M et al (2016) Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Sci 181:91–109CrossRefGoogle Scholar
  35. Lee S-H, Lee W-S, Lee C-H, Kim J-G (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898CrossRefGoogle Scholar
  36. Lopes LD, Pereira E Silva M d C, Andreote FD (2016) Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol 7:1341CrossRefGoogle Scholar
  37. Martinkosky L, Barkley J, Sabadell G et al (2016) Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Sci Total Environ 580:734–743CrossRefGoogle Scholar
  38. Moreno B, Cañizares R, Macci C et al (2015) Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments. J Hazard Mater 300:398–405CrossRefGoogle Scholar
  39. NOM-021-RECNAT (2000) Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Secr. Medio Ambient. y Recur. Nat. 021Google Scholar
  40. NOM-138-SEMARNAT/SSA1-2012 (2012) Límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y especificaciones para la remediación. D Of la Fed 16Google Scholar
  41. OPEC (2017) Online annual statistical bulletin. Organ Pet Export Ctries. ISSN 0475-0608Google Scholar
  42. Ortegon GP, Arboleda FM, Candela L et al (2016) Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). Sci Total Environ 539:410–419CrossRefGoogle Scholar
  43. Pižl V, Nováková A (2003) Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting: the 7th International Symposium on Earthworm Ecology. Pedobiologia (Jena) 47:895–899Google Scholar
  44. Potashev K, Sharonova N, Breus I (2014) The use of cluster analysis for plant grouping by their tolerance to soil contamination with hydrocarbons at the germination stage. Sci Total Environ 485–486:71–82CrossRefGoogle Scholar
  45. Ramadass K, Palanisami T, Smith E et al (2016) Earthworm comet assay for assessing the risk of weathered petroleum hydrocarbon contaminated soils: need to look further than target contaminants. Arch Environ Contam Toxicol 71:561–571CrossRefGoogle Scholar
  46. Reinecke AJ, Van Wyk M, Reinecke SA, (2016) The Influence of Soil Characteristics on the Toxicity of Oil Refinery Waste for the Springtail Folsomia candida (Collembola). Environ Contam Tox 96:804–809Google Scholar
  47. Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11CrossRefGoogle Scholar
  48. Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM (2014) Potential of earthworms to accelerate removal of organic contaminants from soil: a review. Appl Soil Ecol 79:10–25CrossRefGoogle Scholar
  49. Rorat A, Wloka D, Grobelak A et al (2017) Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J Environ Manag 187:347–353CrossRefGoogle Scholar
  50. Rubio-Clemente A, Torres-Palma RA, Peñuela GA (2014) Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci Total Environ 478:201–225CrossRefGoogle Scholar
  51. Sakkos JK, Kieffer DP, Mutlu BR et al (2016) Engineering of a silica encapsulation platform for hydrocarbon degradation using Pseudomonas sp. NCIB 9816-4. Biotechnol Bioeng 113:513–521CrossRefGoogle Scholar
  52. Šmídová K, Kim S, Hofman J (2017) Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils. Chemosphere 179:222–231CrossRefGoogle Scholar
  53. Sparks DL, Page AL, Helmke PA, Loeppert RH (1996) Chemical methods part 3. Soil Science Society of America, MadisonGoogle Scholar
  54. Sundara-Rao WVB, Sinha MK (1963) Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J Agric Sci 33:272–278Google Scholar
  55. Taheri S, Pelosi C, Dupont L (2018) Harmful or useful? A case study of the exotic peregrine earthworm morphospecies Pontoscolex corethrurus. Soil Biol Biochem 116:277–289CrossRefGoogle Scholar
  56. Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241CrossRefGoogle Scholar
  57. Urban M, Lesueur C (2017) Comparing d-SPE sorbents of the QuEChERS extraction method and EMR-lipid for the determination of polycyclic aromatic hydrocarbons (PAH4) in food of animal and plant origin. Food Anal Methods 10:2111–2124CrossRefGoogle Scholar
  58. USEPA (1986) Test method for evaluating solid waste, SW-846, third. U.S. EPA, Washington, DCGoogle Scholar
  59. Vallejo AA, Fernández MS (2008) FRET between non-substrate probes detects lateral lipid domain formation during phospholipase A2 interfacial catalysis. Arch Biochem Biophys 480:1–10CrossRefGoogle Scholar
  60. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286CrossRefGoogle Scholar
  61. Wolf DC, Skipper H (1996) Methods of soil analysis. Microbiological and biochemical properties. Part 2. Soil Science Society of America, Wisconsin, pp 1085–1122Google Scholar
  62. Wu M, Dick WA, Li W et al (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164CrossRefGoogle Scholar
  63. Wu M, Li W, Dick WA et al (2017) Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere 169:124–130.  https://doi.org/10.1016/j.chemosphere.2016.11.059 CrossRefGoogle Scholar
  64. Yan Y, Kuramae EE, de Hollander M et al (2017) Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J 11:56–66CrossRefGoogle Scholar
  65. Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226:279CrossRefGoogle Scholar
  66. Zirbes L, Thonart P, Haubruge E (2012) Microscale interactions between earthworms and microorganisms: a review. Biotechnol Agron Soc Environ 16:125–131Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ)GuadalajaraMexico
  2. 2.Unidad de Tecnología Ambiental, CIATEJGuadalajaraMexico
  3. 3.Facultad de biología, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/nZona UniversitariaXalapaMexico
  4. 4.Red de Ecología FuncionalInstituto de Ecología A.C. (INECOL)XalapaMexico

Personalised recommendations