Journal of Soils and Sediments

, Volume 19, Issue 5, pp 2240–2250 | Cite as

Potential of terracing to reduce glyphosate and AMPA surface runoff on Latosol

  • Ronan Exterkoetter
  • Danilo Eduardo Rozane
  • Walquiria Chaves da Silva
  • Aline Theodoro Toci
  • Gilcelia Aparecida Cordeiro
  • Simone Frederigi Benassi
  • Marcela BoroskiEmail author
Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article



Glyphosate is the world’s most used herbicide and monitoring glyphosate in the environment is a relevant topic. The present study aims to develop a methodology to extract glyphosate from the soil and sediments, and assess the potential of the terracing system to mitigate contamination by glyphosate and AMPA in soil and water.

Materials and methods

Collections were performed on a weekly basis in two different periods of the agricultural calendar, totaling 24 Latosol soil samples, 12 sediment samples, and 10 water samples. The sampling was performed in two distinct areas: in the cultivation area where the lots with and without terrace were installed (soil and water of the reservoirs) and in the creek (sediment) present in the middle of the property. The analytes were extracted from the soil and sediment samples using alkaline extraction with KH2PO4 and NH4OH. The supernatant resulting from the extraction and the water samples were submitted to the derivatization (FMOC-Cl) and solid-phase extraction steps. The samples were then analyzed by high-performance liquid chromatography equipped with fluorescence detector (HPLC-FD).

Results and discussion

The soil samples showed AMPA content in all samples ranging from 0.50 to 1.11 μg g−1 of soil. Glyphosate could be quantified in 37.5% of the samples, and the concentrations ranged from 0.21 to 0.49 μg g−1. High concentrations of glyphosate were detected in the water samples (20.74 and 31.24 μg L−1) in the first rain events after application, decreasing significantly in the following rainfall events. The concentrations found were similar for both lots, but the volume of runoff water was higher in the lot without terrace, thus a greater mass of analyte was transported. None of the analytes under investigation could be quantified in the analysis of riverbed sediments. Glyphosate and AMPA, however, were detected in 50 and 75% of the sediment samples respectively.


The results indicate the presence of analytes in the cultivation areas and prove the effectiveness of the terracing system in agricultural areas, limiting the dumping of the material originated from the surface runoff into water bodies and reducing the risk of contamination.


Conservation management Environmental contamination Latosol Micropollutant dynamics Surface runoff 



The authors wish to thank the Itaipu Binacional and Parque Tecnolológico Itaipu Foundation for technical, logistical, and financial support.


  1. ADAPAR – Agência de Defesa Agropecuária do Paraná (2017a) Comércio e Uso de Agrotóxicos e afins e Prestação de Serviços Fitossanitários. Relatório do Comércio de Agrotóxicos no Paraná. Accessed 26 Nov 2017
  2. ADAPAR – Agência de Defesa Agropecuária do Paraná (2017b) Portaria n° 202, de 19 de julho de 2017. Estabelece o período do vazio sanitário, as datas limites para a semeadura e colheita da soja, e outras medidas para o controle da ferrugem asiática (Phakopsorapachyrhizi) no Estado do Paraná. Governo do Estado, Secretaria da Agricultura e Abastecimento, Paraná, PR, 21 jul. 2017. p.3Google Scholar
  3. Alvares AC, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728CrossRefGoogle Scholar
  4. Amarante Junior OP, Santos TCR, Brito NM, Ribeiro ML (2002) Glifosato: propriedades, toxicidade, usos e legislação. Química Nova 25:589–593CrossRefGoogle Scholar
  5. Andrighetti MS, Nachtigall GR, Queiroz SCN, Ferracini VL, Ayub MAS (2014) Biodegradação de glifosato pela microbiota de solos cultivados com macieira. Revista Brasileira de Ciência do Solo 38:1643–1653CrossRefGoogle Scholar
  6. Aparicio VC, Gerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonicacid in surface water sand soil of agricultural basins. Chemosphere 93:1866–1873CrossRefGoogle Scholar
  7. Araújo ASF, Monteiro RTR, Abakerli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804CrossRefGoogle Scholar
  8. Báez ME, Fuentes E, Espina MJ, Espinoza J (2014) Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: a critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies. J Sep Sci 37:3125–3132CrossRefGoogle Scholar
  9. Bandeira DD, Munaretto JS, Rizzetti TM, Ferronato G, Prestes OD, Martins ML, Zanella R, Adaime MB (2014) Determinação de resíduos de agrotóxicos em leite bovino empregando método QuEChERS modificado e CG-MS/MS. Química Nova 37:900–907Google Scholar
  10. Barja BC, Dos Santos AM (2005) Aminomethilphosphonic acid and glyphosate adsorption onto ghoetite: a comparative study. Environ Sci Technol 39:585–582CrossRefGoogle Scholar
  11. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456CrossRefGoogle Scholar
  12. Botero-Coy AM, Ibánez M, Sancho JV, Hernández F (2013) Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry. J Chromatogr A 1292:132–141CrossRefGoogle Scholar
  13. Chang Y, Zhang Z, Hao J, Yang W, Tang J (2016) A simple label free colorimetric method for glyphosate detectionbased on the inhibition of peroxidase-like activity of Cu(II). Sensors Actuators B Chem 228:410–415CrossRefGoogle Scholar
  14. Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2012) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci 68:16–30CrossRefGoogle Scholar
  15. Dollinger J, Dagès C, Voltz M (2015) Glyphosate sorption to soils and sediments predicted by pedotransfer functions. Environ Chem Lett 13:293–307CrossRefGoogle Scholar
  16. Druart C, Delhomme O, Vaufleury A, Ntcho E, Millet M (2011) Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil. Anal Bioanal Chem 399:1725–1732CrossRefGoogle Scholar
  17. Duke SO, Lydon J, Koskinen WC, Moorman TB, Chaney RL, Hammerschmidt R (2012) Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J Agric Food Chem 60:10375–10397CrossRefGoogle Scholar
  18. EMBRAPA – Brazilian Agricultural Research Corporation (2012) Simplified map of soils of the state of Paraná. Soil Embrapa - Ministry of Agriculture, Livestock and Food SupplyGoogle Scholar
  19. EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (2013) Sistema Brasileiro de Classificação de Solos. Embrapa, BrasíliaGoogle Scholar
  20. EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (2017) Manual de Métodos de Análise de Solo. Embrapa, Rio de JaneiroGoogle Scholar
  21. Gerritse RG, Beltran J, Hernandes F (1996) Adsorption of atrazine, simazine, and glyphosate in soil of the Gnangara mound, Western Australia. Soil Res 34:599–607CrossRefGoogle Scholar
  22. Grandcoin A, Piel S, Baures E (2017) Aminomethylphosphonic acid (AMPA) in natural waters: its sources, behavior and environmental fate. Water Res 117:187–197CrossRefGoogle Scholar
  23. INMETRO - National Institute of Metrology, Quality and Technology (2016) Guidance on validation of analytical methods. DOQ-CGCRE-008 5:31Google Scholar
  24. Keesstra S, Nunes JP, Saco P, Parsons T, Poeppl R, Masselink R, Cerdà A (2018) The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci Total Environ 644:1557–1572CrossRefGoogle Scholar
  25. Kumari KGID, Moldrup P, Paradelo M, Elsgaard L, de Jonge LW (2016) Soil properties control glyphosate sorption in soils amended with birch wood biochar. Water Air Soil Pollut 227:174CrossRefGoogle Scholar
  26. Londero AL, Minella JP, Deuschle D, Schneider FJ, Boeni M, Merten GH (2018) Impact of broad-based terraces on water and sediment losses in no-till (paired zero-order) catchments in southern Brazil. J Soils Sediments 18:1159–1175CrossRefGoogle Scholar
  27. Lupi L, Miglioranza KSB, Aparicio VC, Marino D, Bedmar F, Wunderlin DA (2015) Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci Total Environ 536:687–694CrossRefGoogle Scholar
  28. Masselink R, Temme AJAM, Giménez R, Casalí J, Keesstra SD (2017a) Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica 43:17–39CrossRefGoogle Scholar
  29. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD (2017b) A network theory approach for a better understanding of overland flow connectivity. Hydrol Process 31:207–220CrossRefGoogle Scholar
  30. Mekonnen M, Keesstra SD, Baartman JEM, Stroosnijder L, Maroulis J (2016) Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr Catchment, Northwest Ethiopia. Land Degrad Dev 28:708–717CrossRefGoogle Scholar
  31. Meurer EJ (2006) Fundamentals of soil chemistry. Porto Alegre: Evangarf, 1:285Google Scholar
  32. Miles CJ, Moye HA (1988) Extraction of glyphosate herbicide from soil and clay minerals and determination of residues in soils. J Agric Food Chem 36:486–491CrossRefGoogle Scholar
  33. Moraes PVD, Rossi P (2010) Comportamento ambiental do glifosato. Scientia Agraria Paranaensis 9:22–35Google Scholar
  34. Morillo E, Undabeytia T, Maqueda C (1997) Adsortion of glyphosate on the clay mineral montmorillonite: effect of cu (II) in solution and adsorbed on the mineral. Environ Sci Technol 31:3588–3592CrossRefGoogle Scholar
  35. Ochoa V, Maestroni B (2018) Pesticides in water, soil, and sediments. Integrated Analytical Approaches for Pesticide Management.
  36. Okada E, Costa JL, Bedmar F (2016) Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 263:78–85CrossRefGoogle Scholar
  37. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66CrossRefGoogle Scholar
  38. Pinto E, Soares AG, Ferreira IMPLVO (2018) Quantitative analysis of glyphosate, glufosinate and AMPA in irrigation water by in situ derivatization–dispersive liquid–liquid microextraction combined with UPLC-MS/MS. Anal Methods 10:554–561CrossRefGoogle Scholar
  39. Poiger T, Buerge IJ, Bächli A, Müller MD, Balmer ME (2017) Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environ Sci Pollut Res 24:1588–1596CrossRefGoogle Scholar
  40. Prado H (2011) Easy pedology: applications. Piracicaba - SP, support foundation for agricultural research 1: 180Google Scholar
  41. Prata F, Lavorenti A, Regitano JB, Tornisielo VL (2000) Influência da matéria orgânica na sorção e dessorção do glifosato em solos com diferentes atributos mineralógicos. Rev Bras Ciênc Solo 24:947–951CrossRefGoogle Scholar
  42. Prosdocimi M, Tarolli P, Cerdà A (2016) Mulching practices for reducing soil water erosion: a review. Earth-Sci Rev 161:191–203CrossRefGoogle Scholar
  43. Queiroz GMP, Silva MR, Bianco RJF, Pinheiro A, Kaufmann V (2011) Transporte de glifosato pelo escoamento superficial e por lixiviação em um solo agrícola. Química Nova 34:190–195CrossRefGoogle Scholar
  44. Ramirez CE, Bellmund S, Gardinali PR (2014) A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC-FLD + MS/MS. Case study: canals with influence on Biscayne national park. Sci Total Environ 496:389–401CrossRefGoogle Scholar
  45. Rampazzo N, Rampazzo Todorovic G, Mentler A, Blum WEH (2013) Adsorption of glyphosate and aminomethylphosphonic acid in soils. Int Agrophysics 27:203–209CrossRefGoogle Scholar
  46. Rozane DE, Romualdo LM, Centurion JF, Barbosa JC (2011) Dimensionamento do número de amostras para avaliação da fertilidade do solo. Ciências Agrárias 32:111–118CrossRefGoogle Scholar
  47. Sasal MC, Demonte L, Cislaghi A, Gabioud EA, Oszust JD, Wilson MG, Michlig N, Beldoménico HR, Repetti MR (2015) Glyphosate loss by runoff and its relationship with phosphorus fertilization. J Agric Food Chem 63:4444–4448CrossRefGoogle Scholar
  48. Scribner EA, Battaglin WA, Gilliom RJJ, Meyer MTT (2007) Concentrations of glyphosate, its degradation product, aminomethylphosphonic acid, and glufosinate in ground- and surface-water, rainfall, and soil samples collected in the United States, 2001–06. Geological Survey Scientific Investigations Report. Accessed 26 Nov 2017
  49. Silva BM, Silva PRD, Rezende MOO (2015) Development of green HPLC/UV methodology for the determination of glyphosate in environmental soil samples. Eclética Química 40:106–116CrossRefGoogle Scholar
  50. SINDIVEG – Sindicato Nacional da Indústria de Produtos para Defesa Vegetal (2016) Dados de utilização de pesticidas por estados brasileiros. Accessed 26 April 2018
  51. Tarolli P (2018) Agricultural Terraces Special Issue Preface. Land Degrad Dev 29(10):3544–3548CrossRefGoogle Scholar
  52. Tarolli P, Preti F, Romano N (2014) Terraced landscapes: from an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 6:10–25CrossRefGoogle Scholar
  53. Todorovic GR, Rampazzo N, Mentler A, Blum WE, Eder A, Strauss P (2014) Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils. Int Agrophys 28:93–100CrossRefGoogle Scholar
  54. Toni LRM, Santana H, Zaia DAM (2006) Adsorption of glyphosate on soils and minerals. Química Nova 29:829–833CrossRefGoogle Scholar
  55. Turnbull L, Hütt MT, Ioannides AA, Kininmonth S, Poeppl R, Tockner K, Parsons AJ (2018) Connectivity and complex systems: learning from a multi-disciplinary perspective. Appl Network Sci 3:11CrossRefGoogle Scholar
  56. Van Stempvoort DR, Roy JW, Brown SJ, Bickerton G (2014) Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Chemosphere 95:455–463CrossRefGoogle Scholar
  57. Zanão Júnior LA, Faria RT, Caramori PH (2015) Produtividade da soja no entorno do reservatório de Itaipu. IAPAR, LondrinaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ronan Exterkoetter
    • 1
  • Danilo Eduardo Rozane
    • 1
    • 2
  • Walquiria Chaves da Silva
    • 3
  • Aline Theodoro Toci
    • 4
  • Gilcelia Aparecida Cordeiro
    • 4
  • Simone Frederigi Benassi
    • 5
  • Marcela Boroski
    • 4
    Email author
  1. 1.Federal University of Paraná (UFPR)CuritibaBrazil
  2. 2.Sao Paulo State University (UNESP)RegistroBrazil
  3. 3.State University of Santa Catarina (UDESC)LagesBrazil
  4. 4.Federal University of Latin American Integration (UNILA)Foz do IguaçuBrazil
  5. 5.Itaipu BinacionalFoz do IguaçuBrazil

Personalised recommendations