Journal of Soils and Sediments

, Volume 19, Issue 1, pp 381–392 | Cite as

Do genetic diversity patterns of soil ammonia-oxidizing microorganisms (AOM) match the habitat types of the NATURA2000 scheme?

  • Fotios Bekris
  • Luciana Georgescu
  • Michael Bariotakis
  • Kiriakos Kotzabasis
  • Nickolas Panopoulos
  • Stergios PirintsosEmail author
Soils, Sec 5 • Soil and Landscape Ecology • Research Article



Despite the important role of soil ammonia-oxidizing microorganisms (AOM) in the biogeochemical cycle of nitrogen, a unified view of the factors driving their spatial pattern of abundance and genetic diversity in terrestrial ecosystems is still lacking. The objective of this study was to explore whether abundance and genetic diversity of AOM follow the existing diversity of habitat types of the NATURA2000.

Materials and methods

We evaluated the relative abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA), as well as their genetic diversity in pastoral landscapes of an eastern Mediterranean island. Focusing on six different NATURA2000 habitat types of Crete, the study of AOM was based on culture-independent techniques, while vegetation and soil data of each habitat type were also collected and incorporated in the analysis.

Results and discussion

Our results suggest that the relative abundances of soil AOB and AOA in the pastoral landscapes of Crete are related to a limited number of soil factors, while their genetic diversity patterns are mainly explained by the dominant woody plant families, and partially by the soil parameters, but do not match the habitat types of the NATURA2000 scheme.


The variation of genetic diversity of soil AOM is not predicted from the habitat types of the NATURA2000 scheme. Thus, NATURA2000 habitat types cannot serve as a management scheme of soil AOM.


Ammonia-oxidizing microorganisms Genetic diversity Functional groups Mediterranean ecosystems NATURA2000 Pastoral landscapes 


Funding information

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11368_2018_2039_MOESM1_ESM.pdf (338 kb)
ESM 1 (PDF 338 kb)


  1. Adair KL, Schwartz E (2008) Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of Northern Arizona, USA. Microb Ecol 56:420–426CrossRefGoogle Scholar
  2. Allen SE (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, OxfordGoogle Scholar
  3. Banning NC, Maccarone LD, Fisk LM, Murphy DV (2015) Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci Rep 5:11146CrossRefGoogle Scholar
  4. Bansal S, Kapoor KK (2000) Vermicomposting of crop residues and cattle dung with Eisenia foetida. Bioresour Technol 73:95–98CrossRefGoogle Scholar
  5. Baolan H, Shuai L, Wei W, Lidong S, Liping L, Weiping L, Guangming T, Xiangyang X, Ping Z (2014) pH-dominated niche segregation of ammonia-oxidizing microorganisms in Chinese agricultural soils. FEMS Microbiol Ecol 90:290–299CrossRefGoogle Scholar
  6. Bartelt-Ryser J, Joshi J, Schmid B, Brandl H, Balser T (2005) Soil feedbacks of plant diversity on soil microbial communities and subsequent plant growth. Perspect Plant Ecol 7:27–49CrossRefGoogle Scholar
  7. Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917CrossRefGoogle Scholar
  8. Chen XP, Zhu YG, Xia Y, Shen JP, He JZ (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10:1978–1987CrossRefGoogle Scholar
  9. Chen X, Zhang LM, Shen JP, Xu ZH, He JZ (2010) Soil type determines the abundance and community structure of ammonia-oxidizing bacteria and archaea in flooded paddy soils. J Soils Sediments 10:1510–1516CrossRefGoogle Scholar
  10. Chen Y, Xu Z, Hu H, Hu Y, Hao Z, Jiang Y, Chen B (2013) Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Appl Soil Ecol 68:36–45CrossRefGoogle Scholar
  11. Culmsee Η, Schmidt Μ, Schmiedel Ι, Schacherer Α, Meyer P, Leuschner C (2014) Predicting the distribution of forest habitat types using indicator species to facilitate systematic conservation planning. Ecol Indic 37:131–144CrossRefGoogle Scholar
  12. Delgado-Baquerizo M, Gallardo A, Wallenstein MD, Maestre FT (2013a) Vascular plants mediate the effects of aridity and soil properties on ammonia oxidizing bacteria and archaea. FEMS Microbiol Ecol 85:273–282CrossRefGoogle Scholar
  13. Delgado-Baquerizo M, Gallardo A, Wallenstein MD, Maestre FT (2013b) Data from: vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. Dryad Digital Repository
  14. Diamantopoulos J, Pirintsos SA, Margaris NS, Stamou GP (1994) Variation in Greek phrygana vegetation in relation to soil and climate. J Veg Sci 5:355–360CrossRefGoogle Scholar
  15. Diaz S, Lavorel S, McIntyre SUE, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Osternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007) Plant trait responses to grazing—a global synthesis. Glob Chang Biol 13:313–341CrossRefGoogle Scholar
  16. Eisenhauer N, Milcu A, Bessler H, Engels C, Gleixner G, Habekost M et al (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496CrossRefGoogle Scholar
  17. Elzinga CL, Salzer DW, Willoughby JW (1998) Measuring and monitoring plant populations. U.S Department of the Interior, Bureau of Land Management, Denver COGoogle Scholar
  18. Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33:855–869CrossRefGoogle Scholar
  19. EU Council Directive (1992) Natura 2000 Network on the conservation of natural habitats and of wild fauna. COUNCIL DIRECTIVE 92/43/EEC. The Council of the European CommunitiesGoogle Scholar
  20. European Commission (2007) Interpretation Manual of European Habitats–EUR27. Published by the European Commission, DG Environment, Nature and BiodiversityGoogle Scholar
  21. Evans D (2010) Interpreting the habitats of Annex I: past, present and future. Acta Bot Gallica 157:677–686CrossRefGoogle Scholar
  22. Fierer N, Carney KM, Claire Horner-Devine M, Megonigal JP (2009) The biogeography of ammonia-oxidizing bacterial communities in soil. Microb Ecol 58:435–445CrossRefGoogle Scholar
  23. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688CrossRefGoogle Scholar
  24. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19CrossRefGoogle Scholar
  25. Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. P Natl Acad Sci USA 108:21206–21211CrossRefGoogle Scholar
  26. He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di H (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364–2374CrossRefGoogle Scholar
  27. Higgins MD, Higgins R (1996) A geological companion to Greece and the Aegean. Gerald Duckworth & Co, LondonGoogle Scholar
  28. Horz HP, Rotthauwe JH, Lukow T, Liesack W (2000) Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Methods 39:197–204CrossRefGoogle Scholar
  29. Hu HW, He JZ (2017) Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments 17:2709–2717CrossRefGoogle Scholar
  30. Hu HW, Zhang LM, Dai Y, Di HJ, He JZ (2013) pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediments 13:1439–1449CrossRefGoogle Scholar
  31. Hu HW, Xu ZH, He JZ (2014) Ammonia-oxidizing archaea play a predominant role in acid soil nitrification. Adv Agron 125:261–302CrossRefGoogle Scholar
  32. Hu HW, MacDonald C, Trivedi P, Holmes B, Bodrossy L, He JZ, Singh BK (2015a) Water addition regulated the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environ Microbiol 17:444–461CrossRefGoogle Scholar
  33. Hu HW, Zhang LM, Yuan CL, Zheng Y, Wang JT, Chen D, He JZ (2015b) The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Front Microbiol 6:938Google Scholar
  34. Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11(7):1658–1671CrossRefGoogle Scholar
  35. Jimenez-Alfaro Β, Chytry Μ, Rejmanek Μ, Mucina L (2014) The number of vegetation types in European countries: major determinants and extrapolation to other regions. J Veget Sci 25:863–872CrossRefGoogle Scholar
  36. Jones JB (2001) Laboratory guide for conducting soil tests and plant analysis. CRC Press, USAGoogle Scholar
  37. Jongman RH, ter Braak CJF, van Tongeren OFR (1987) Data analysis in community and landscape ecology. Pudoc, WageningenGoogle Scholar
  38. Kalra Y (2010) Handbook of reference methods for plant analysis. CRC Press, USAGoogle Scholar
  39. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546CrossRefGoogle Scholar
  40. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosse JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809CrossRefGoogle Scholar
  41. Lichstein J (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188:117–131CrossRefGoogle Scholar
  42. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach, OregonGoogle Scholar
  43. Mücher CA, Hennekens SM, Bunce RGH, Schaminee JHJ, Schaepman ME (2009) Modelling the spatial distribution of Natura 2000 habitats across Europe. Landscape Urban Plan 92:148–159CrossRefGoogle Scholar
  44. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289CrossRefGoogle Scholar
  45. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB et al. (2015) Package ‘vegan’. Community ecology package, version, 2–2Google Scholar
  46. Olsen SR, Dean L (1965) Phosphorus. In: Black CA (ed), Methods of soil analysis, part 2. American Society of Agronomic, Madison, pp 1044–1047Google Scholar
  47. Oton EV, Quince C, Nicol GW, Prosser JI, Gubry-Rangin C (2016) Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota. ISME J 10:85–96CrossRefGoogle Scholar
  48. Pirintsos SA, Loppi S, Dalaka A, De Dominici V (1998) Effects of grazing on epiphytic lichen vegetation in a Mediterranean mixed evergreen sclerophyllous and deciduous shrubland (Northern Greece). Isr J Plant Sci 46(4):303–307CrossRefGoogle Scholar
  49. Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JM, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18(1):85–95CrossRefGoogle Scholar
  50. Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidizers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531CrossRefGoogle Scholar
  51. R Development Core Team (2013) R: a language and environment for statistical Computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  52. Rodwell JS, Schaminée JHJ, Mucina L, Pignati S, Dring J, Moss D (2002) The diversity of European vegetation. An overview of phytosociological alliances and their relationships to EUNIS habitats. EC-LNV Report nr. 2002/054. Wageningen, The NetherlandsGoogle Scholar
  53. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712Google Scholar
  54. Rousidou C, Papadopoulou ES, Kortsinidou M, Giannakou IO, Singh BK, Menkissoglu-Spiroudi U, Karpouzas DG (2013) Bio-pesticides: harmful or harmless to ammonia oxidizing microorganisms? The case of a Paecilomyces lilacinus-based nematicide. Soil Biol Biochem 67:98–105CrossRefGoogle Scholar
  55. Schollenberger CJ (1945) Determination of soil organic matter. Soil Sci 59:53–56CrossRefGoogle Scholar
  56. Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611CrossRefGoogle Scholar
  57. Sher Y, Zaady E, Ronen Z, Nejidat A (2012) Nitrification activity and levels of inorganic nitrogen in soils of a semi-arid ecosystem following a drought-induced shrub death. Eur J Soil Biol 53:86–93CrossRefGoogle Scholar
  58. Sher Y, Zaady E, Nejidat A (2013) Spatial and temporal diversity and abundance of ammonia oxidizers in semi-arid and arid soils: indications for a differential seasonal effect on archaeal and bacterial ammonia oxidizers. FEMS Microbiol Ecol 86:544–556CrossRefGoogle Scholar
  59. Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155CrossRefGoogle Scholar
  60. Stempfhuber B, Engel M, Fischer D, Neskovic-Prit G, Wubet T, Schöning I, Gubry-Rangin C, Kublik S, Schloter-Hai B, Rattei T, Welzl G, Nicol GW, Schrumpf M, Buscot F, Prosser JI, Schloter M (2015) pH as a driver for ammonia-oxidizing archaea in forest soils. Microb Ecol 69:879–883CrossRefGoogle Scholar
  61. Stres B (2006) The first decade of terminal restriction fragment length polymorphism (T-RFLP) in microbial ecology. Acta Agric Slov 88:65–73Google Scholar
  62. Sun YF, Shen JP, Zhang CJ, Zhang LM, Bai WM, Fang Y, He JZ (2018) Responses of soil microbial community to nitrogen fertilizer and precipitation regimes in a semi-arid steppe. J Soils Sediments 18:762–774CrossRefGoogle Scholar
  63. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  64. Thomas GW (1996) Soil ph and soil acidity. In: Sparks DL (ed) Methods of soil analysis. Soil science Society of America, Madison, pp 475–490Google Scholar
  65. Timmis K, Lorenzo V, Verstraete W, Garcia JL, Ramos JL, Santos H et al (2014) Pipelines for New Chemicals: a strategy to create new value chains and stimulate innovation-based economic revival in Southern European countries. Environ Microbiol 16:9–18CrossRefGoogle Scholar
  66. Tóth G, Montanarella L, Stolbovoy V, Máté F, Bódis K, Jones A, Panagos P, Van Liedekerke M (2008) Soils of the European Union JRC Scientific and Technical Reports, Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  67. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364CrossRefGoogle Scholar
  68. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995CrossRefGoogle Scholar
  69. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74CrossRefGoogle Scholar
  70. Vrochidou EK, Tsanis IK (2012) Assessing precipitation distribution impacts on droughts on the island of Crete. Nat Hazards Earth Syst Sci 12:1159–1171CrossRefGoogle Scholar
  71. Wasof S, Lenoir J, Gallet-Moron E, Jamoneau A, Brunet J, Cousins SAO, DeFrenne P, Diekmann M, Hermy M, Kolb A, Liira J, Verheyen K, Wulf M, Decocq G (2013) Ecological niche shifts of understory plants along a latitudinal gradient of temperate forests in Western Europe. Glob Ecol Biogeogr 22:1130–1140CrossRefGoogle Scholar
  72. Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sc Soc Am J 29:677–678CrossRefGoogle Scholar
  73. Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han WY, Singh BK (2011) Links between ammonia oxidizer community structure, abundance and nitrification potential in acidic soil. Appl Environ Microbiol 77:4618–4625CrossRefGoogle Scholar
  74. Yao H, Campbell CD, Chapman SJ, Freitag TE, Nicol GW, Singh BK (2013) Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environ Microbiol 15:2545–2556CrossRefGoogle Scholar
  75. Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045CrossRefGoogle Scholar
  76. Zheng Y, Yang W, Hu HW, Kim YC, Duan JC, Luo CY, Wang SP, Guo LD (2014) Ammonia oxidizers and denitrifiers in response to reciprocal elevation translocation in an alpine meadow on the Tibetan Plateau. J Soils Sediments 14(6):1189–1199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fotios Bekris
    • 1
  • Luciana Georgescu
    • 1
  • Michael Bariotakis
    • 1
  • Kiriakos Kotzabasis
    • 1
  • Nickolas Panopoulos
    • 1
    • 2
  • Stergios Pirintsos
    • 1
    • 2
    Email author
  1. 1.Department of BiologyUniversity of CreteHeraklionGreece
  2. 2.Botanical GardenUniversity of CreteRethymnoGreece

Personalised recommendations