Advertisement

Journal of Soils and Sediments

, Volume 19, Issue 1, pp 128–139 | Cite as

Assessment of frozen ground organic carbon pool on the Qinghai-Tibet Plateau

  • Lin Jiang
  • Huai ChenEmail author
  • Qiuan Zhu
  • Yanzheng Yang
  • Mingxu Li
  • Changhui Peng
  • Dan Zhu
  • Yixin He
Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • 113 Downloads

Abstract

Purpose

Under rapid climate change, soil organic carbon (SOC) dynamic in frozen ground may significantly influence terrestrial carbon cycles. The aim of this study was to investigate the storage, spatial patterns, and influencing factors of SOC in frozen ground on the Qinghai-Tibet Plateau, which known as the earth’s Third Pole.

Materials and methods

Using the observed edaphic data from China’s Second National Soil Survey, we estimated the SOC storage (SOCS) of frozen ground (including permafrost, seasonally, and short time frozen ground) on the plateau with a depth of 0–3 m. Furthermore, the effect of vegetation and climate factors on spatial variance of SOC density (SOCD) was analyzed.

Results and discussion

The SOCD decreased from the southeastern to the northwestern part of the plateau, and increased with shorten of freezing duration. SOCS of permafrost, seasonally, and short time frozen ground were calculated as 40.9 (34.2–47.6), 26.7 (24.1–29.4), and 6 (5.6–6.4) Pg, making a total of 73.6 (63.9–83.3) Pg in 0–3 m depth on the plateau. Normalized difference vegetation index and mean annual precipitation could significantly affect the spatial distribution of SOC in permafrost and seasonally frozen ground.

Conclusions

The soil in plateau frozen ground contained substantial organic carbon, which could be affected by plant and climate variables. However, the heterogeneous landform may make the fate of carbon more complicated in the future.

Keywords

Climate Deep soil Frozen ground Organic carbon Plateau permafrost Vegetation 

Notes

Acknowledgements

The authors give special thanks to Ms. Wan Xiong for her editing and valuable comments on the manuscript.

Funding information

This study was supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (QYZDB-SSW-DQC007), the National Key R & D Program of China (2016YFC0501802), and the National Natural Science Foundation of China (31570480, 41571220).

Supplementary material

11368_2018_2006_MOESM1_ESM.docx (993 kb)
ESM 1 (DOCX 993 kb)
11368_2018_2006_MOESM2_ESM.xlsx (19 kb)
ESM 2 (XLSX 19 kb)

References

  1. Abbott BW, Larouche JR, Jones JB, Bowden WB, Balser AW (2014) Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J Geophys Res Biogeosci 119:2049–2063CrossRefGoogle Scholar
  2. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRefGoogle Scholar
  3. Bockheim JG, Munroe JS (2014) Organic carbon pools and genesis of Alpine soils with permafrost: a review. Arctic Antarct Alp Res 46:987–1006CrossRefGoogle Scholar
  4. Brahim N, Bernoux M, Gallali T (2012) Pedotransfer functions to estimate soil bulk density for Northern Africa: Tunisia case. J Arid Environ 81:77–83CrossRefGoogle Scholar
  5. Callesen I, Liski J, Raulundrasmussen K, Olsson M, Taustrand L, Vesterdal L, Westman CJ (2003) Soil carbon stores in Nordic well-drained forest soils-relationship with climate and texture class. Glob Chang Biol 9:358–370CrossRefGoogle Scholar
  6. Chaplot VAM, Rumpel C, Valentin C (2007) Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Glob Biogeochem Cycles 19Google Scholar
  7. Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19:2940–2955CrossRefGoogle Scholar
  8. Chen L, Liang J, Qin S, Liu L, Fang K, Xu Y, Ding J, Li F, Luo Y, Yang Y (2016) Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat Commun 7.  https://doi.org/10.1038/ncomms13046
  9. Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res: Earth Sur 112(F2).  https://doi.org/10.1029/2006JF000631
  10. Cheng G, Zhao L (2000) The problems associated with permafrost in the development of the Qinghai-Xizang Plateau. Quart Sci 6:521–531Google Scholar
  11. Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–108CrossRefGoogle Scholar
  12. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  13. Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S, Chen Y, Peng Y, Ji C, He H, Smith P, Yang Y (2016) The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Glob Chang Biol 22:2688–2701CrossRefGoogle Scholar
  14. Dorji T, Odeh I, Field D (2014) Vertical distribution of soil organic carbon density in relation to land use/cover, altitude and slope aspect in the Eastern Himalayas. Land 3:1232–1250CrossRefGoogle Scholar
  15. Epstein HE, Burke IC, Lauenroth WK (2002) Regional patterns of decomposition and primary production rates in the US Great Plains. Ecology 83:320–327Google Scholar
  16. Fang J, Liu G, Xu S (1996) Soil carbon pool in China and its global significance. J Environ Sci 8:249–254Google Scholar
  17. Feng RP (1993) Soil species of Gansu. Gansu Science and Technology Press, LanzhouGoogle Scholar
  18. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280CrossRefGoogle Scholar
  19. Fu G, Shen ZX, Sun W, Zhong ZM (2015) A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. J Plant Growth Regul 34:57–65CrossRefGoogle Scholar
  20. Fuchs M, Kuhry P, Hugelius G (2015) Low below-ground organic carbon storage in a subarctic Alpine permafrost environment. Cryosphere 9:427–438CrossRefGoogle Scholar
  21. Goidts E, van Wesemael B, Crucifix M (2009) Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. Eur J Soil Sci 60:723–739CrossRefGoogle Scholar
  22. Haeberli W, Cheng G, Gorbunov AP, Harris SA (1993) Mountain permafrost and climatic change. Permafr Periglac Process 4:165–174CrossRefGoogle Scholar
  23. Henry HA (2008) Climate change and soil freezing dynamics: historical trends and projected changes. Clim Chang 87:421–434CrossRefGoogle Scholar
  24. Hou X (2001) 1:1000000 Vegetation Atlas of China. Science Press, BeijingGoogle Scholar
  25. Hou ZX, Zeng Q (1993) Soil species of Xinjiang. Xinjiang Science Technology and Health Press, UrumchiGoogle Scholar
  26. Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593CrossRefGoogle Scholar
  27. Jin HJ, Luo DL, Wang SL, Lü LZ, Wu JC (2011) Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sci Cold Arid Reg 3:281–305Google Scholar
  28. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436CrossRefGoogle Scholar
  29. Kato T, Tang Y, Song G, Hirota M, Cui X, Du M, Li Y, Zhao X, Oikawa T (2004) Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. J Geophys Res Atmos 109:1045–1056Google Scholar
  30. Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y, Zhao X (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob Chang Biol 12:1285–1298CrossRefGoogle Scholar
  31. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627CrossRefGoogle Scholar
  32. Li X, Jin R, Pan X, Zhang T, Guo J (2012) Changes in the near-surface soil freeze–thaw cycle on the Qinghai-Tibetan Plateau. Int J Appl Earth Obs Geoinf 17:33–42CrossRefGoogle Scholar
  33. Liu SY (1995) Soil species of Qinghai. China Agriculture Press, BeijingGoogle Scholar
  34. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742CrossRefGoogle Scholar
  35. Liu SQ, Li JP (1994) Soil species of Tibet Autonomous Region. Science Press, BeijingGoogle Scholar
  36. Liu W, Chen S, Qin X, Baumann F, Scholten T, Zhou Z, Sun W, Zhang T, Ren J, Qin D (2012) Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau. Environ Res Lett 7:035401CrossRefGoogle Scholar
  37. Lu M, Zhou X, Yang Q, Li H, Luo Y, Fang C, Chen J, Yang X, Li B (2013) Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94:726–738CrossRefGoogle Scholar
  38. Matzner E, Borken W (2008) Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur J Soil Sci 59:274–284CrossRefGoogle Scholar
  39. Meng ND (1994) Soil species of Sichuan. Sichuan Science and Technology Press, ChengduGoogle Scholar
  40. Mu C, Zhang T, Wu Q, Peng X, Cao B, Zhang X, Cao B, Cheng G (2015) Editorial: organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. Cryosphere 9:479–486CrossRefGoogle Scholar
  41. Mu C, Zhang T, Zhang X, Cao B, Peng X (2016a) Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau. Eur J Soil Sci 67:773–781CrossRefGoogle Scholar
  42. Mu C, Zhang T, Zhang X, Li L, Guo H, Zhao Q, Cao L, Wu Q, Cheng G (2016b) Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. J Geophys Res Biogeosci 121:1781–1791CrossRefGoogle Scholar
  43. Peng F, You Q, Xu M, Guo J, Wang T, Xue X (2014) Effects of warming and clipping on ecosystem carbon fluxes across two hydrologically contrasting years in an alpine meadow of the Qinghai-Tibet Plateau. PLoS One 9:e109319CrossRefGoogle Scholar
  44. Peng F, Quangang Y, Xue X, Guo J, Wang T (2015) Effects of rodent-induced land degradation on ecosystem carbon fluxes in alpine meadow in the Qinghai-Tibet Plateau, China. Solid Earth 6:303–310CrossRefGoogle Scholar
  45. Peng X, Frauenfeld OW, Zhang T, Wang K, Cao B, Zhong X, Su H, Mu C (2017) Response of seasonal soil freeze depth to climate change across China. Cryosphere 11:1059–1073CrossRefGoogle Scholar
  46. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159CrossRefGoogle Scholar
  47. Prokushkin AS, Kawahigashi M, Tokareva IV (2009) Global warming and dissolved organic carbon release from permafrost soils. In: Margesin R (ed) . Springer, pp 237–250Google Scholar
  48. Qiu GQ, Zhou YW, Guo DX, Wang YX (2000) Map of geocryological regionalization and classification in China. Science Press, BeijingGoogle Scholar
  49. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158CrossRefGoogle Scholar
  50. Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environ Res Lett 9(8)Google Scholar
  51. Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycles 8:279–293CrossRefGoogle Scholar
  52. Schuur EA, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559CrossRefGoogle Scholar
  53. Schuur E, McGuire A, Schädel C, Grosse G, Harden J, Hayes D, Hugelius G, Koven C, Kuhry P, Lawrence D (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179CrossRefGoogle Scholar
  54. Sun H, Zheng D (1998) Development formation and evolution of the Qinghai-Tibet Plateau. Guangdong Science and Technology Press, GuangzhouGoogle Scholar
  55. Tian Y, Ouyang H, Xu X, Song M, Zhou C (2008) Distribution characteristics of soil organic carbon storage and density on the Qinghai-Tibet Plateau. Acta Pedol Sin 45:933–942Google Scholar
  56. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 317–382Google Scholar
  57. Wang WF, Qiu DY, Liu QM (1994) Soil species of Yunnan. Yunnan Science and Technology Press, KunmingGoogle Scholar
  58. Wang S, Huang M, Shao X, Mickler RA, Li K, Ji J (2004) Vertical distribution of soil organic carbon in China. Environ Manag 33(suppl 1):S200–S209Google Scholar
  59. Wang G, Li Y, Wu Q, Wang Y (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci China 49:1156–1169CrossRefGoogle Scholar
  60. Wang Y, Liu H, Chung H, Yu L, Mi Z, Geng Y, Jing X, Wang S, Zeng H, Cao G, Zhao X, He J-S (2014) Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland. Glob Biogeochem Cycles 28:1081–1095CrossRefGoogle Scholar
  61. Wu Q, Zhang T (2008) Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res: Atmos 113(D13).  https://doi.org/10.1029/2007JD009539
  62. Wu H, Guo Z, Peng C (2003a) Distribution and storage of soil organic carbon in China. Glob Biogeochem Cycles 17.  https://doi.org/10.1029/2001GB001844
  63. Wu H, Guo Z, Peng C (2003b) Land use induced changes of organic carbon storage in soils of China. Glob Chang Biol 9:305–315CrossRefGoogle Scholar
  64. Wu Q, Zhang T, Liu Y (2010) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob Planet Chang 72:32–38CrossRefGoogle Scholar
  65. Wu Q, Zhang T, Liu Y (2012) Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 6:607–612CrossRefGoogle Scholar
  66. Wynn JG, Bird MI, Vellen L, Grandclement E, Carter JO, Berry SL (2006) Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Glob Biogeochem Cycles 20(2).  https://doi.org/10.1029/2005GB002576
  67. Xie XL, Sun B, Zhou HZ, Li AB (2004) Soil organic carbon storage in China. Pedosphere 14:491–500Google Scholar
  68. Xue X, Guo J, Han BS, Sun QW, Liu LC (2009) The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology 165:182–190CrossRefGoogle Scholar
  69. Yang Y, Mohammat A, Feng J, Zhou R, Fang J (2007) Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 84:131–141CrossRefGoogle Scholar
  70. Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Chang Biol 14:1592–1599CrossRefGoogle Scholar
  71. Yang Y, Fang J, Smith P, Tang Y, Chen A, Ji C, Hu H, Rao S, Tan K, HE JS (2009) Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob Chang Biol 15:2723–2729CrossRefGoogle Scholar
  72. Yang M, Nelson FE, Shiklomanov NI, Guo D, Wan G (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Sci Rev 103:31–44CrossRefGoogle Scholar
  73. Yang ZP, Gao JX, Zhao L, Xu XL, Ouyang H (2013) Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau (SCI). Plant Soil 367:687–700CrossRefGoogle Scholar
  74. Yi S, Wang X, Qin Y, Xiang B, Ding Y (2014) Responses of alpine grassland on Qinghai–Tibetan Plateau to climate warming and permafrost degradation: a modeling perspective. Environ Res Lett 9:074014CrossRefGoogle Scholar
  75. Zhang T, Barry R, Knowles K, Ling F, Armstrong R (2003) Distribution of seasonally and perennially frozen ground in the Northern Hemisphere, Proceedings of the 8th International Conference on Permafrost. AA Balkema Publishers, pp 1289–1294Google Scholar
  76. Zhao L, Ping C-L, Yang D, Cheng G, Ding Y, Liu S (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Glob Planet Chang 43:19–31CrossRefGoogle Scholar
  77. Zhao L, Li Y, Xu S, Zhou H, Gu S, Yu G, Zhao X (2006) Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan Plateau. Glob Chang Biol 12:1940–1953CrossRefGoogle Scholar
  78. Zhou YW, Guo DX, Qiu GQ, Cheng GD, Li SD (2000) Geocryology in China. Science Press, BejingGoogle Scholar
  79. Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T (2010) Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob Ecol Biogeogr 19:649–662Google Scholar
  80. Zimov SA, Schuur EA, Chapin IIIFS (2006) Permafrost and the global carbon budget. Science 312:1612–1613CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lin Jiang
    • 1
    • 2
    • 3
    • 4
  • Huai Chen
    • 1
    • 3
    • 4
    Email author
  • Qiuan Zhu
    • 1
    • 2
  • Yanzheng Yang
    • 1
    • 2
  • Mingxu Li
    • 1
    • 2
  • Changhui Peng
    • 1
    • 2
    • 5
  • Dan Zhu
    • 3
    • 4
  • Yixin He
    • 3
    • 4
  1. 1.College of ForestryNorthwest A&F UniversityYanglingChina
  2. 2.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
  3. 3.Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  4. 4.Zoige Peatland and Global Change Research StationChinese Academy of SciencesHongyuanChina
  5. 5.Department of Biology Science, Institute of Environment SciencesUniversity of Quebec at MontrealMontrealCanada

Personalised recommendations