Advertisement

Journal of Soils and Sediments

, Volume 18, Issue 9, pp 2970–2979 | Cite as

Nitrogen transformation rates and N2O producing pathways in two pasture soils

  • Ting Lan
  • Helen Suter
  • Rui Liu
  • Xuesong Gao
  • Deli Chen
Soils, Sec 5 • Soil and Landscape Ecology • Research Article

Abstract

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg−1 day−1 in TR soil () and 5.79 mg N kg−1 day−1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg−1 day−1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.

Keywords

Acetylene Autotrophic nitrification Denitrification Heterotrophic nitrification Immobilization Mineralization 

Notes

Funding Information

This work received financial support from Incitec Pivot, the Australian Government Department of Agriculture through the Grains Research and Development Corporation, Australian Research Council (DE150100870, DP160101028, and LP160101134), National Natural Science Foundation of China (41501243), and the State Key Laboratory of Soil and Sustainable Agriculture (Y20160031).

References

  1. Abdalla M, Jones M, Smith P, Williams M (2009) Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils. Soil Use Manag 25:376–388CrossRefGoogle Scholar
  2. Accoe F, Boeckx P, Busschaert J, Hofman G, Van Cleemput O (2004) Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age. Soil Biol Biochem 36:2075–2087CrossRefGoogle Scholar
  3. AGO (2010) National Greenhouse Account, National Inventory Report 2008, volume 2. Australian Greenhouse Office, Commonwealth of Australia, CanberraGoogle Scholar
  4. Amha Y, Bohne H (2011) Denitrification from the horticultural peats: effects of pH, nitrogen, carbon, and moisture contents. Biol Fertil Soils 47:293–302CrossRefGoogle Scholar
  5. Baggs EM (2011) Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr Opin Environ Sustain 3:321–327CrossRefGoogle Scholar
  6. Bengtsson G, Bengtson P, Mansson KF (2003) Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol Biochem 35:143–154CrossRefGoogle Scholar
  7. Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157CrossRefGoogle Scholar
  8. Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16:1058Google Scholar
  9. Bouwmeester RJB, Vlek PLG, Stumpe JM (1985) Effect of environmental factors on ammonia volatilization from a urea-fertilized soil. Soil Sci Soc Am J 49:376–381CrossRefGoogle Scholar
  10. Braker G, Conrad R (2011) Diversity, structure, and size of N2O-producing microbial communities in soils—what matters for their functioning? In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 75. Advances in applied microbiology. Elsevier Academic Press Inc, San Diego, pp 33–70CrossRefGoogle Scholar
  11. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond Ser B Biol Sci 368:20130122CrossRefGoogle Scholar
  12. Cai YJ, Ding WX, Zhang XL, Yu HY, Wang LF (2010) Contribution of heterotrophic nitrification to nitrous oxide production in a long-term n-fertilized arable black soil. Commun Soil Sci Plant 41:2264–2278CrossRefGoogle Scholar
  13. Chen ZM, Ding WX, Xu YH, Müller C, Rütting T, Yu HY, Fan JL, Zhang JB, Zhu TB (2015) Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidences from a 15N tracing study to literature synthesis. Soil Biol Biochem 91:65–75CrossRefGoogle Scholar
  14. Chen ZM, Xu YH, Fan JL, Yu HY, Ding WX (2017) Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China. Soil Biol Biochem 110:103–115CrossRefGoogle Scholar
  15. Cheng Y, Cai ZC, Zhang JB, Lang M, Mary B, Chang SX (2012) Soil moisture effects on gross nitrification differ between adjacent grassland and forested soils in central Alberta, Canada. Plant Soil 352:289–301CrossRefGoogle Scholar
  16. Cheng Y, Wang J, Mary B, Zhang JB, Cai ZC, Chang SX (2013) Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol Biochem 57:848–857CrossRefGoogle Scholar
  17. De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866CrossRefGoogle Scholar
  18. del Prado A, Merino P, Estavillo JM, Pinto M, Gonzalez-Murua C (2006) N2O and NO emissions from different N sources and under a range of soil water contents. Nutr Cycl Agroecosyst 74:229–243Google Scholar
  19. Denk TRA, Mohn J, Decock C, Lewicka-Szczebak D, Harris E, Butterbach-Bahl K, Kiese R, Wolf B (2017) The nitrogen cycle: a review of isotope effects and isotope modeling approaches. Soil Biol Biochem 105:121–137CrossRefGoogle Scholar
  20. Di HJ, Cameron KC (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr Cycl Agroecosyst 64:237–256CrossRefGoogle Scholar
  21. Di HJ, Cameron KC (2016) Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: a review. J Soils Sediments 16:1401–1420CrossRefGoogle Scholar
  22. Fernandez LA, Bedmar EJ, Sagardoy MA, Delgado MJ, Gomez MA (2011) Denitrification activity in soils for sustainable agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin Heidelberg, pp 321–338Google Scholar
  23. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  24. Garrido F, Henault C, Gaillard H, Perez S, Germon JC (2002) N2O and NO emissions by agricultural soils with low hydraulic potentials. Soil Biol Biochem 34:559–575Google Scholar
  25. Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms—a review. Soil Biol Biochem 42:2058–2067CrossRefGoogle Scholar
  26. Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (ed) Methods of soil analysis. Part 2. Microbiological and Biochemical properties. SSSA Book Series, Madison, pp 985–1018Google Scholar
  27. Herrmann AM, Witter E, Katterer T (2007) Use of acetylene as a nitrification inhibitor to reduce biases in gross N transformation rates in a soil showing rapid disappearance of added ammonium. Soil Biol Biochem 39:2390–2400CrossRefGoogle Scholar
  28. Hu HW, He JZ (2017) Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments 17:2709–2717CrossRefGoogle Scholar
  29. Inubushi K, Naganuma H, Kitahara S (1996) Contribution of denitrification and autotrophic and heterotrophic nitrification to nitrous oxide production in andosols. Biol Fertil Soils 23:292–298CrossRefGoogle Scholar
  30. IPCC (1996) Climate change 1995, the science of climate change. Contribution of working group 1 to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  31. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  32. Islam A, Chen D, White RE (2007) Heterotrophic and autotrophic nitrification in two acid pasture soils. Soil Biol Biochem 39:972–975CrossRefGoogle Scholar
  33. Jirout J (2015) Nitrous oxide productivity of soil fungi along a gradient of cattle impact. Fungal Ecol 17:155–163CrossRefGoogle Scholar
  34. Jirout J, Simek M, Elhottova D (2013) Fungal contribution to nitrous oxide emissions from cattle impacted soils. Chemosphere 90:565–572CrossRefGoogle Scholar
  35. Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am J 18:33–34CrossRefGoogle Scholar
  36. Klemedtsson L, Svensson BH, Lindberg T, Rosswall T (1977) The use of acetylene inhibition of nitrous oxide reductase in quantifying denitrification in soils. Swed J Agric Res 7:179–185Google Scholar
  37. Lan T, Han Y, Roelcke M, Nieder R, Cai Z (2013) Processes leading to N2O and NO emissions from two different Chinese soils under different soil moisture contents. Plant Soil 371:611–627Google Scholar
  38. Lan T, Han Y, Cai Z (2015) Denitrification and its product composition in typical Chinese paddy soils. Biol Fertil Soils 51:89–98CrossRefGoogle Scholar
  39. Liu R, Suter H, Hayden H, He JZ, Chen DL (2015a) Nitrate production is mainly heterotrophic in an acid dairy soil with high organic content in Australia. Biol Fertil Soils 51:891–896CrossRefGoogle Scholar
  40. Liu R, Hayden H, Suter H, He J, Chen D (2015b) The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils. J Soils Sediments 15:1113–1118CrossRefGoogle Scholar
  41. Liu R, Suter H, He J, Hayden H, Chen D (2015c) Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. J Soils Sediments 15:2304–2309CrossRefGoogle Scholar
  42. Liu SW, Lin F, Wu S, Ji C, Sun Y, Jin YG, Li SQ, Li ZF, Zou JW (2017) A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Glob Chang Biol 23:2520–2532Google Scholar
  43. Loick N, Dixon ER, Abalos D, Vallejo A, Matthews GP, McGeough KL, Well R, Watson CJ, Laughlin RJ, Cardenas LM (2016) Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. Soil Biol Biochem 95:1–7CrossRefGoogle Scholar
  44. Long A, Heitman J, Tobias C, Philips R, Song B (2013) Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol 79:168–176CrossRefGoogle Scholar
  45. Lu CQ, Tian HQ (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data 9:181–192CrossRefGoogle Scholar
  46. Medinets S, Skiba U, Rennenberg H, Butterbach-Bahl K (2015) A review of soil NO transformation: associated processes and possible physiological significance on organisms. Soil Biol Biochem 80:92–117CrossRefGoogle Scholar
  47. Morkved PT, Dorsch P, Bakken LR (2007) The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol Biochem 39:2048–2057CrossRefGoogle Scholar
  48. Müller C, Stevens RJ, Laughlin RJ (2004) A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol Biochem 36:619–632CrossRefGoogle Scholar
  49. Müller C, Laughlin RJ, Spott O, Rütting T (2014) Quantification of N2O emission pathways via a 15N tracing model. Soil Biol Biochem 72:44–54Google Scholar
  50. Nannipieri P, Eldor P (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369CrossRefGoogle Scholar
  51. Nave LE, Vance ED, Swanston CW, Curtis PS (2009) Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153:231–240CrossRefGoogle Scholar
  52. Nelissen V, Rütting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27CrossRefGoogle Scholar
  53. Okereke GU (1984) Prevalence of nitrous oxide reducing capacity in denitrifiers from a variety of habitats. Plant Soil 81:421–428CrossRefGoogle Scholar
  54. Pedersen H, Dunkin KA, Firestone MK (1999) The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. Biogeochemistry 44:135–150Google Scholar
  55. Renault P, Stengel P (1994) Modeling oxygen diffusion in aggregated soils: I. Anaerobiosis inside the aggregates. Soil Sci Soc Am J 58:1017–1023CrossRefGoogle Scholar
  56. Rohe L, Well R, Lewicka-Szczebak D (2017) Use of oxygen isotopes to differentiate between nitrous oxide produced by fungi or bacteria during denitrification. Rapid Commun Mass Spectrom 31:1297–1312CrossRefGoogle Scholar
  57. Russow R, Stange CF, Neue HU (2009) Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from 15N tracer experiments. Soil Biol Biochem 41:785–795CrossRefGoogle Scholar
  58. Saggar S, Tate KR, Giltrap DL, Singh J (2008) Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: a review. Plant Soil 309:25–42CrossRefGoogle Scholar
  59. Saghir NS, Mulvancy RL, Azam F (1993) Determination of nitrogen by microdiffusion in mason jars. I. Inorganic nitrogen in soil extracts. Commun Soil Sci Plant 24:1745–1762CrossRefGoogle Scholar
  60. Sahrawat KL (2008) Factors affecting nitrification in soils. Commun Soil Sci Plant 39:1436–1446CrossRefGoogle Scholar
  61. Shan J, Zhao X, Sheng R, Xia YQ, Ti CP, Quan XF, Wang SW, Wei WX, Yan XY (2016) Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions, and influencing factors. Environ Sci Technol 50:9972–9980CrossRefGoogle Scholar
  62. Smith KA, McTaggart IP, Tsuruta H (1997) Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manag 13:296–304CrossRefGoogle Scholar
  63. Stevens RJ, Laughlin RJ, Burns LC, Arah JRM, Hood RC (1997) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol Biochem 29:139–151CrossRefGoogle Scholar
  64. Tate KR, Parshotam A, Ross DJ (1995) Soil carbon storage and turnover in temperate forests and grasslands—a New Zealand perspective. J Biogeogr 22:695–700CrossRefGoogle Scholar
  65. van Veen JA, Ladd JN, Frissel MJ (1984) Modelling C and N turnover through the microbial biomass in soil. Plant Soil 76:257–274CrossRefGoogle Scholar
  66. Verhagen FJM, Laanbroek HJ (1991) Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Appl Environ Microbiol 57:3255–3263Google Scholar
  67. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  68. Wrage N, Groenigen JWV, Oenema O, Baggs EM (2005) A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Commun Mass Spectrom 19:3298–3306CrossRefGoogle Scholar
  69. Wu D, Koster JR, Cardenas LM, Bruggemann N, Lewicka-Szczebak D, Bol R (2016) N2O source partitioning in soils using N-15 site preference values corrected for the N2O reduction effect. Rapid Commun Mass Spectrom 30:620–626Google Scholar
  70. Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5:538–541CrossRefGoogle Scholar
  71. Zhang J, Cai Z, Zhu T (2011) N2O production pathways in the subtropical acid forest soils in China. Environ Res 111:643–649CrossRefGoogle Scholar
  72. Zhang Y, Zhang J, Meng T, Zhu T, Müller C, Cai Z (2013) Heterotrophic nitrification is the predominant NO3 production pathway in acid coniferous forest soil in subtropical China. Biol Fertil Soils 49:955–957CrossRefGoogle Scholar
  73. Zhang J, Sun W, Zhong W, Cai Z (2014) The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biol Biochem 76:143–148CrossRefGoogle Scholar
  74. Zhang JB, Muller C, Cai ZC (2015) Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biol Biochem 84:199–209CrossRefGoogle Scholar
  75. Zhang Y, Zhao W, Zhang J, Cai Z (2017) N2O production pathways relate to land use type in acidic soils in subtropical China. J Soils Sediments 17:306–314CrossRefGoogle Scholar
  76. Zhu T, Zhang J, Cai Z (2011) The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation. Plant Soil 343:313–327CrossRefGoogle Scholar
  77. Zhu TB, Meng TZ, Zhang JB, Yin YF, Cai ZC, Yang WY, Zhong WH (2013) Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biol Fertil Soils 49:323–331CrossRefGoogle Scholar
  78. Zhu T, Meng T, Zhang J, Zhong W, Mueller C, Cai Z (2015) Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China. J Soils Sediments 15:705–709CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ting Lan
    • 1
    • 2
  • Helen Suter
    • 2
  • Rui Liu
    • 2
  • Xuesong Gao
    • 1
  • Deli Chen
    • 2
  1. 1.College of ResourcesSichuan Agricultural UniversityChengduChina
  2. 2.Faculty of Veterinary and Agriculture ScienceUniversity of MelbourneMelbourneAustralia

Personalised recommendations