Journal of Soils and Sediments

, Volume 18, Issue 10, pp 3104–3113 | Cite as

Dynamics of total suspended matter and phytoplankton loads in the river Elbe

  • Gudrun HillebrandEmail author
  • Paulin Hardenbicker
  • Helmut Fischer
  • Wilfried Otto
  • Stefan Vollmer
Physical and Ecological Aspects of Mobile Sediments



Identifying sources and fluxes of suspended matter within the catchment is vitally important for the water quality of rivers and for establishing sediment management plans. Constituents of suspended particles are of abiotic and biotic origin. In the Elbe, the biotic fraction of suspended particles is mainly composed of phytoplankton biomass. In this study, total seston and phytoplankton are analyzed for their seasonality, their interdependence and temporal trends over three or five decades, respectively.

Materials and methods

The biotic load was separated from the total suspended matter load, and time series of total suspended substances (seston) (1964 to 2015) and chlorophyll a values (1985 to 2015) were analyzed. Our analyses focused on the seasonal dynamics, long-term trends, and the correlation to hydrological events.

Results and discussion

The mean share of phytoplankton in total seston accounted for 24% in summer months (April–September), with a negative correlation between discharge and total seston, and 11% in winter months (October–March), with a weak positive correlation between discharge and total seston. The long-term trend of seston load was decreasing, while phytoplankton load did not show a significant trend.


Autochthonous biogenic portions should not be neglected in the budget of total suspended matter loads in the Elbe catchment. Our results indicate that land-use and industrial changes subsequent to the German reunification mainly caused the observed trend. Phytoplankton growth superimposes the seasonal dynamics of seston in summer, whereas in the long term, decreasing mineral fraction dominates the significantly decreasing trend.


Long-term trends Phytoplankton Seasonality Suspended matter load Suspended sediments 



This research has been carried out in the projects 5.01 “Climate projections for sediment balances and risks due to cohesive sediments” and 5.02 “Impacts of climate change on nutrient and phytoplankton dynamics in navigable rivers” within the departmental research program “KLIWAS—impacts of climate change on waterways and navigation,” financed by the German Federal Ministry of Transport and Digital Infrastructure (BMVI).


  1. Adams MS, Kausch H, Gaumert T, Krüger KE (1996) The effect of the reunification of Germany on the water chemistry and ecology of selected rivers. Environ Conserv 23:35–43CrossRefGoogle Scholar
  2. Asselman NEM (2000) Fitting and interpretation of sediment rating curves. J Hydrol 234(3–4):228–248CrossRefGoogle Scholar
  3. Asselman NEM, Middelkoop H, van Dijk PM (2003) The impact of changes in climate and land use on soil erosion, transport and deposition of suspended sediment in the river Rhine. Hydrol Process 17(16):3225–3244CrossRefGoogle Scholar
  4. Basu BK, Kalff J, Pinel-Alloul B (2000) Midsummer plankton development along a large temperate river: the St. Lawrence River. Can J Fish Aquat Sci 57:7–15CrossRefGoogle Scholar
  5. Bergemann M, Blöcker G, Harms H, Kerner M, Meyer-Nehls R, Petersen W, Schröder F (1996) Der Sauerstoffhaushalt der Tideelbe. Die Küste 58:199–261Google Scholar
  6. Boyer NJ, Kelble RC, Ortner PB, Rudnick DT (2009) Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol Indic 9:56–67CrossRefGoogle Scholar
  7. Bundesanstalt für Gewässerkunde (BfG) (2013) Neuausrichtung des WSV-Messstellennetzes Schwebstoffmonitoring. BfG-1799. 1–85Google Scholar
  8. Cloern JE, Grenz C, Vidergarlucas L (1995) An empirical model of the phytoplankton chlorophyll:carbon ratio—the conversion factor between productivity and growth rate. Limnol Oceanogr 40:1313–1321CrossRefGoogle Scholar
  9. Descy JP (1993) Ecology of the phytoplankton of the river Moselle—effects of disturbances on community structure and diversity. Hydrobiologia 249:111–116CrossRefGoogle Scholar
  10. Descy JP, Gosselain V (1994) Development and ecological importance of phytoplankton in a large lowland river (river Meuse, Belgium). Hydrobiologia 289:139–155CrossRefGoogle Scholar
  11. Desortová B, Punčochář P (2011) Variability of phytoplankton biomass in a lowland river: response to climate conditions. Limnologica 41:160–166CrossRefGoogle Scholar
  12. Deutsch B, Voss M, Fischer H (2009) Nitrogen transformation processes in the Elbe river: distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate. Aquat Sci 71:228–237CrossRefGoogle Scholar
  13. Fischer H (2015) Zur Steuerung der Trophie großer Flüsse. Korrespondenz Wasserwirtschaft 8(4/15):225–230Google Scholar
  14. Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry 61:37–55CrossRefGoogle Scholar
  15. Freie und Hansestadt Hamburg, and Hamburg Port Authority (2012) Deutsches Gewässerkundliches Jahrbuch, Elbegebiet, Teil III, Untere Elbe ab der HavelmündungGoogle Scholar
  16. Frings RM (2008) Downstream fining in large sand-bed rivers. Earth Sci Rev 87(1–2):39–60CrossRefGoogle Scholar
  17. Frings RM, Gehres N, Promny M, Middelkoop H, Schüttrumpf H, Vollmer S (2013) Today’s sediment budget of the Rhine River channel, focusing on the upper Rhine graben and Rhenish massif. Geomorphology 204:573–587CrossRefGoogle Scholar
  18. Geider RJ (1987) Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106:1–34CrossRefGoogle Scholar
  19. Grasso DA, Jakob A, Spreafico M (2007) Abschätzung der Schwebstofffrachten mittels zweier Methoden. Wasser Energie Luft 99(3):273–280Google Scholar
  20. Greiser N (1988) Zur Dynamik von Schwebstoffen und ihren biologischen Komponenten in der Elbe bei Hamburg, Hamburger Küstenforschung, p 45Google Scholar
  21. Guhr H, Karrasch B, Spott D (2000) Shifts in the processes of oxygen and nutrient balances in the river Elbe since the transformation of the economic structure. Acta Hydrochim Hydrobiol 28:155–161CrossRefGoogle Scholar
  22. Guhr H, Spott D, Bormki G, Baborowski M, Karrasch B (2004) The effects of nutrient concentrations in the river Elbe. Acta Hydrochim Hydrobiol 31:282–296CrossRefGoogle Scholar
  23. Habersack H, Haimann M, Kerschbaumsteiner W, Lalk P (2008) Schwebstoffe in Fließgewässern, Leitfaden zur Erfassung des Schwebstofftransportes. Lebensministerium, Wien, pp 1–108Google Scholar
  24. Hardenbicker P, Rolinski S, Weitere M, Fischer H (2014) Contrasting shifts and long-term trends in phytoplankton dynamics in two large rivers. Int Rev Hydrobiol 99:287–299CrossRefGoogle Scholar
  25. Hardenbicker P, Weitere M, Ritz S, Schöll F, Fischer H (2015) Longitudinal plankton dynamics in the rivers Rhine and Elbe. Riv Res Appl 32:1264–1278CrossRefGoogle Scholar
  26. Harris GP (1978) Photosynthesis, productivity and growth—the physiological ecology of phytoplankton, Schweizerbart. Fundamental and Applied Limnology Special Issues. Ergebnisse Der Limnologie 10:1–171Google Scholar
  27. Hein B, Viergutz C, Wyrwa J, Kirchesch V, Schöl A (2016) Impacts of climate change on the water quality of the Elbe estuary (Germany). J Appl Water Eng Res. CrossRefGoogle Scholar
  28. Heininger P (2013) Sediment management in river basins—case Elbe. Karlsruher Flussgebietstage 2013. S Fuchs and R Eyckmanns-Wolters. Karlsruhe Institute of Technology, pp 81–86Google Scholar
  29. Heise S, Claus E, Heininger P, Krämer T, Krüger F, Schwartz R, Förstner U (2005) Studie zur Schadstoffbelastung der Sedimente im Elbeeinzugsgebiet. Ursachen und Trends. on behalf of Hamburg Port Authority (HPA), HamburgGoogle Scholar
  30. Hipel KW, McLoed AI (1994) Time series modelling of water resources and environmental systems. Elsevier, AmsterdamGoogle Scholar
  31. Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9(1):18–26CrossRefGoogle Scholar
  32. Huot Y, Babin M, Bruyant F, Grob C, Twardowski MS, Claustre H (2007) Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean. Biogeosciences 4:853–868CrossRefGoogle Scholar
  33. Ietswaart T, Breebaart L, Van Zanten B, Bijkerk R (1999) Plankton dynamics in the river Rhine during downstream transport as influenced by biotic interactions and hydrological conditions. Hydrobiologia 410:1–10CrossRefGoogle Scholar
  34. IKSE (2005) Die Elbe und ihr Einzugsgebiet, Internationale Kommission zum Schutz der Elbe, Magdeburg und WassergütestelleGoogle Scholar
  35. IKSE (2013) Sedimentmanagementkonzept der IKSE/FGG—Vorschläge für eine gute Sedimentmanagementpraxis im Elbegebiet zur Erreichung überregionaler Handlungsziele der IKSE/der FGG. Magdeburg. Report of the International Commission for the Protection of the Elbe River,
  36. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, LondonGoogle Scholar
  37. Koch RW, Guelda DL, Bukaveckas PA (2004) Phytoplankton growth in the Ohio, Cumberland and Tennessee rivers, USA: inter-site differences in light and nutrient limitation. Aquat Ecol 38:17–26CrossRefGoogle Scholar
  38. Kundzewicz ZW, Robson AR (2004) Change detection in hydrological records—a review of the methodology. Hydrol Sci 49(1):7–19CrossRefGoogle Scholar
  39. Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (2007) Deutsches Gewässerkundliches Jahrbuch, Rheingebiet, Teil III, Mittel- und Niederrhein mit deutschem Issel- und MaasgebietGoogle Scholar
  40. Lau YL, Oliver BG, Krishnappan BG (1989) Transport of some chlorinated contaminants by the water, suspended sediments and bed sediments in the St. Clair and Detroit rivers. Environ Toxicol Chem 8(4):293–301CrossRefGoogle Scholar
  41. Lehmann A, Rode M (2001) Long-term behaviour and cross-correlation water quality analysis of the river Elbe, Germany. Water Res 35:2153–2160CrossRefGoogle Scholar
  42. Mortazavi B, Iverson RL, Landing WM, Lewis FG, Wenrui H (2000) Control of phytoplankton production and biomass in a river-dominated estuary: Apalachicola Bay, Florida, USA. Mar Ecol Prog Ser 198:19–31CrossRefGoogle Scholar
  43. Mueller D (1988) Biologische Testverfahren zur Eutrophierungsbeurteilung bei Fliessgewässern. Z Wasser Abwasser-Forsch 21:240–247Google Scholar
  44. Netzband A (2013) Sediment management concept of the port of Hamburg. Karlsruher Flussgebietstage 2013. S Fuchs and R Eyckmanns-Wolters. Karlsruhe Institute of Technology, pp 87–91Google Scholar
  45. Neu T (2000) In situ cell and glycoconjugate distribution in river snow studied by confocal laser scanning microscopy. Aquat Microb Ecol 21:85–95CrossRefGoogle Scholar
  46. Newson MD (2007) River and stream ecosystems of the world. CE Cushing, KW Cummins, GW Minshall (eds), University of California Press, Berkeley, 2006. No. of pages: 817. ISBN 0-520-24567-9. River Res Applic 23, pp 123–124Google Scholar
  47. Pettitt AN (1979) A non-parametric approach to the change point problem. Appl Statist 28:126–135CrossRefGoogle Scholar
  48. Pohlert T (2011) Trend: Non-parametric trend tests. R package version 1.5. Bundesanstalt für Gewässerkunde, KoblenzGoogle Scholar
  49. Pohlert T, Hillebrand G, Breitung V (2011) Trends of persistent organic pollutants in suspended matter of the river Rhine. Hydrol Process 25:3803–3817CrossRefGoogle Scholar
  50. Pusch M, Fischer H (eds) (2006) Stoffdynamik und Habitatstruktur in der Elbe Konzepte für die nachhaltige Entwicklung einer Flusslandschaft, vol 5. Weissensee Verlag, BerlinGoogle Scholar
  51. Quiel K, Becker A, Kirchesch V, Schoel A, Fischer A (2011) Influence of global change on phytoplankton and nutrient cycling in the Elbe River. Reg Environ Chang 11:405–421CrossRefGoogle Scholar
  52. R Development Core Team (2011) R: a language and environment for statistical computing. The R Foundation for Statistical Computing: Vienna, Austria ISBN: 3–900051–07-0 Available online at http://wwwR-projectorg/ Accessed October 2015
  53. Reynolds CS, Descy JP (1996) The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie-Supplement 113:161–187Google Scholar
  54. Ritz S (2016) In-stream nitrogen retention in a large nitrogen rich river: estimates from open-channel methods, PhD Thesis, Technical University Cottbus-Senftenberg, Germany, p 136Google Scholar
  55. Schöl A, Hein B, Wyrwa J, Kirchesch V (2014) Modelling water quality in the Elbe and its estuary—large scale and long term applications with focus on the oxygen budget of the estuary. Die Küste 81:203–232Google Scholar
  56. Skoog DA, West DM, Holler FJ, Crouch SR (2003) Fundamentals of analytical chemistry, 8th edn. Brooks Cole, GroveGoogle Scholar
  57. Vongvixay A, Grimaldi C, Gascuel-Odoux C, Laguionie P, Faucheux M, Gilliet N, Mayet M (2010) Analysis of suspended sediment concentration and discharge relations to identify particle origins in small agricultural watersheds, Proceedings of the ICCE symposium, Warsaw University of Life Ciences - SGGW, Poland, 14–18 June 2010. IAHS Publ 337, pp 76–83Google Scholar
  58. Walling DE (2005) Tracing suspended sediment sources in catchments and river systems. Sci Total Environ 344:159–184CrossRefGoogle Scholar
  59. Walling DE (2009) The impact of global change on erosion and sediment transport by rivers: current progress and future challenges. UNESCO-IHP Scientific PaperGoogle Scholar
  60. Walling DE, Probst JL (eds) (1997) Human impact on erosion and sedimentation. IAHS Publication, No 245Google Scholar
  61. Walling DE, Owens PN, Carter J, Leeks GJL, Lewis S, Meharg AA, Wright J (2003) Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Appl Geochem 18(2):195–220CrossRefGoogle Scholar
  62. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San DiegoGoogle Scholar
  63. Wilczek S, Wörner U, Pusch MT, Fischer H (2007) Role of suspended particles for extracellular enzyme activity and biotic control of pelagic bacterial populations in the large lowland river Elbe. Fund Appl Limnol, Archiv für Hydrobiologie 169(2):153–168CrossRefGoogle Scholar
  64. Wörner U, Zimmermann-Timm H, Kausch H (2002) Aggregate-associated bacteria. And heterotrophic flagellates in the Elbe. Int Rev Hydrobiol 87(2–3):255–266CrossRefGoogle Scholar
  65. Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68(1):13–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department Groundwater, Geology, River MorphologyFederal Institute of HydrologyKoblenzGermany
  2. 2.Department Ecological InteractionsFederal Institute of HydrologyKoblenzGermany

Personalised recommendations