Addressing organic viticulture environmental burdens by better understanding interannual impact variations

  • Christel Renaud-GentiéEmail author
  • Valentin Dieu
  • Marie Thiollet-Scholtus
  • Anne Mérot



Consumer demand and state incentives in certain EU countries are driving the rapid development of organic viticulture. However, compared with conventional viticulture, it has shown higher interannual variability in its environmental impacts. Improved understanding of this variability would help organic winegrowers better address their environmental impacts.


This two-part study examined interannual variability of environmental impacts of four vineyards with contrasting pedoclimatic and technical production conditions. First, life cycle assessments were performed on each of these four vineyards for two contrasted years in terms of both climate and pest and disease pressure. Next, for one of these vineyards located in Mediterranean conditions, life cycle assessments were completed on a chronosequence of six consecutive years. Life cycle assessments of organic wine grapes were calculated based on detailed inventories of data from the eight real vineyard situations. Interannual variations were considered to be the deviation between the impact results of two production years.

Results and discussion

In all the vineyards, diesel combustion was the main impact contributor. For the four vineyards, the impacts that varied most were generally freshwater ecotoxicity, soil ecotoxicity, marine eutrophication, freshwater eutrophication and metal depletion. The intensity/range of interannual variations differed between plots. The main agricultural operations contributing to impact variations were from disease management of climate-related disease pressures. The 6-year chronosequence analysis showed that certain years were very similar in terms of impact results. The impact that varied most was surprisingly terrestrial acidification. The chronosequence analysis brought to light that the choice of active ingredient could be a greater source of impact variations than interannual climatic conditions and disease pressure.


This study provides an overview of the hotspots and variability of organic viticulture environmental impacts in contrasted climate years and a climatic chronosequence. The main pathways for environmental performance improvements are (i) reducing fuel consumption by either limiting the number of operations, using more fuel-efficient machines or different energy sources or/and adjusting tractor speed; (ii) reducing the doses and emissions of copper products and choosing the less impacting types of copper; and (iii) limiting nitrogen and heavy metal emissions through the choice of fertiliser type and management.


Climate Copper Cradle-to-farm gate LCA Fuel Variability Vineyard 



The authors would like to thank F. Ajem, S. Beauchet, Z. Bibes, N. Oumarou-Koura, A. Perrin, A. Rouault and the winegrowers who participated in this study and the reviewers for their efforts to improve the paper.

Funding information

This study was supported supported by INRA (Vibrato project) and Casdar (Qualenvic project).


  1. Agence-Bio (2017) La bio dans le Monde. pp 48 p. Agence française pour le développement et la promotion de l’agriculture biologique, Paris, FranceGoogle Scholar
  2. Agence-bio (2018) L’agriculture biologique, un accélérateur économique, à la résonnance sociale et sociétale. Agence bio (Agence Française pour le Développement et la Promotion de l'Agriculture Biologique)Google Scholar
  3. Balafoutis A, Koundouras S, Anastasiou E, Fountas S, Arvanitis K (2017) Life cycle assessment of two vineyards after the application of precision viticulture techniques: a case study. Sustainability 9:1997. CrossRefGoogle Scholar
  4. Baldoin C, De Zanche C, Bondesan D (2008) Field testing of a prototype recycling sprayer on vineyard: spray distribution and dispersion. In: Agric Eng Int CIGR J, pp 1–10Google Scholar
  5. Beauchet S, Rouault A, Thiollet-Scholtus M, Renouf M, Jourjon F, Renaud-Gentié C (2019) Inter-annual variability in the environmental performance of viticulture technical management routes—a case study in the Middle Loire Valley (France). Int J Life Cycle Assess 24:253–265CrossRefGoogle Scholar
  6. Bellon-Maurel V, Peters GM, Clermidy S, Frizarin G, Sinfort C, Ojeda H, Roux P, Short MD (2014) Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies—part ii: application to viticulture. J Clean Prod 87:119–129CrossRefGoogle Scholar
  7. Bessou C, Basset-Mens C, Tran T, Benoist A (2013) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18:340–361CrossRefGoogle Scholar
  8. Cerutti AK, Beccaro GL, Bruun S, Bosco S, Donno D, Notarnicola B, Bounous G (2014) Life cycle assessment application in the fruit sector: state of the art and recommendations for environmental declarations of fruit products. J Clean Prod 73:125–135CrossRefGoogle Scholar
  9. Czyrnek-Delêtre MM, Jourjon F, Perrin A, Renaud-Gentié C, van der Werf HM (2018) From the field to the farm-scaling up life cycle assessment towards eco-design at farm-level. In: 11th International Conference on Life Cycle Assessment of Food 2018 (LCA Food) On “Global food challenges towards sustainable consumption and production” Bangkok, ThailandGoogle Scholar
  10. eMAAF and ONPV (2013) e-phy, Le catalogue des produits phytopharmaceutiques et de leurs usages des matières fertilisantes et des supports de culture homologués en France. Ministère de l'Agriculture, de l'Agroalimentaire et de la Forêt, Organisation Nationale pour la Protection des VégétauxGoogle Scholar
  11. European-Commission (2018) Commission implementing regulation (EU) 2018/1981 of 13 December 2018, . In: 317, 14.12.2018, Ed E. Commission. pp 16–20, Off J Eur UnionGoogle Scholar
  12. European-Parliament-and-Council (2018) Regulation (EU) 2018/848 of the european parliament and of the council of 30 May 2018 on organic production and labelling of organic products. In: L/150 vol.61. pp 1–92. EU, Off J Eur UnionGoogle Scholar
  13. Faist Emmenegger, M. et al. Taking into account water use impacts in the LCA of biofuels: an Argentinean case study. Int. J. Life Cycle Ass. 16, 869-877, doi:10.1007/s11367-011-0327-1 (2011).Google Scholar
  14. Falcone G, Strano A, Stillitano T, De Luca A, Iofrida N, Gulisano G (2015) Integrated sustainability appraisal of wine-growing management systems through LCA and LCC methodologies. Chem Eng Trans 44:223–228. CrossRefGoogle Scholar
  15. Freiermuth, R. Modell zur Berechnung der Schwermetallflüsse in der Landwirtschaftlichen Ökobilanz - SALCA-Schwermetall. 28p (Forschungsanstalt Agroscope Reckenholz-Tänikon (ART), 2006).Google Scholar
  16. Frischknecht R, Jungbluth N, Althaus H-J, Doka G, Dones R, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2005) The ecoinvent database: overview and methodological framework. Int J Life Cycle Assess 10:3–9CrossRefGoogle Scholar
  17. Foster, G. R. Revised Universal Soil Loss Equation – Version 2 (RUSLE2). . 286p (USDA, Washington D.C., 2005).Google Scholar
  18. Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG (2012) Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 13:1–16CrossRefGoogle Scholar
  19. Gaviglio C (2010) Etude des performances énergétiques de matériels viticoles. Matevi, In, pp 1–8Google Scholar
  20. Gazzarin C, Vögeli GA (2011) Coûts-machines 2011/2012 : Avec les coûts des parties du bâtiment et des installations mécaniques. Station de recherche Agroscope Reckenholz-Tänikon ART, Ettenhausen, SuisseGoogle Scholar
  21. Gessler C, Pertot I, Perazzolli M (2011) Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol Mediterr 50:3–44Google Scholar
  22. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level.: Report I: Characterisation. A report to the Netherlands Ministry of Housing, Spacial Planning and the Environment (VROM)Google Scholar
  23. Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697CrossRefGoogle Scholar
  24. Huglin P, Schneider C (1998) Biologie et Ecologie de la Vigne. 370 ppGoogle Scholar
  25. Hutchings, N., Webb, J. & Amon, B. in EMEP/EEA emission inventory guidebook 2009 (2009).Google Scholar
  26. Jamar L, Mostade O, Huyghebaert B, Pigeon O, Lateur M (2010) Comparative performance of recycling tunnel and conventional sprayers using standard and drift-mitigating nozzles in dwarf apple orchards. Crop Prot 29:561–566CrossRefGoogle Scholar
  27. Jourjon F, Symoneaux R (2014) AOC versus environnement : quelle perception par les consommateurs et quel levier pour la compétitivité des vins français ? In: 37th World Congress of Vine and Wine, Mendoza, ArgentinaGoogle Scholar
  28. Mackie KA, Müller T, Kandeler E (2012) Remediation of copper in vineyards—a mini review. Environ Pollut 167:16–26CrossRefGoogle Scholar
  29. Navarro A, Puig R, Kılıç E, Penavayre S, Fullana-i-Palmer P (2017) Eco-innovation and benchmarking of carbon footprint data for vineyards and wineries in Spain and France. J Clean Prod 142(Part 4):1661–1671CrossRefGoogle Scholar
  30. Nemecek, T. & Kägi, T. Life Cycle Inventory of Agricultural Production Systems. Data v 2.0 No. 15a., (Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zürich and Dübendorf, Switzerland, 2007).Google Scholar
  31. Nemecek, T. & Schnetzer, J. Methods of assessment of direct field emissions for LCIs of agricultural production systems, Data v3.0 (2012). 25 (2011).Google Scholar
  32. Neto B, Dias AC, Machado M (2013) Life cycle assessment of the supply chain of a Portuguese wine: from viticulture to distribution. Int J Life Cycle Assess 18:590–602CrossRefGoogle Scholar
  33. OIV (2017) The distribution of the world’s grapevine varieties, Ed I. O. o. V. a. W. (OIV). pp 54Google Scholar
  34. Peña N, Antón A, Kamilaris A, Fantke P (2018) Modeling ecotoxicity impacts in vineyard production: addressing spatial differentiation for copper fungicides. Sci Total Environ 616-617:796–804CrossRefGoogle Scholar
  35. Raclot D, Le Bissonnais Y, Louchart X, Andrieux P, Moussa R, Voltz M (2009) Soil tillage and scale effects on erosion from fields to catchment in a Mediterranean vineyard area. Agric Ecosyst Environ 134:201–210CrossRefGoogle Scholar
  36. Ramos MC, Martínez-Casasnovas JA (2006) Erosion rates and nutrient losses affected by composted cattle manure application in vineyard soils of NE Spain. Catena 68:177–185CrossRefGoogle Scholar
  37. Reiser D, Sehsah E-S, Bumann O, Morhard J, Griepentrog HW (2019) Development of an autonomous electric robot implement for intra-row weeding in vineyards. Agriculture 9:18CrossRefGoogle Scholar
  38. Renaud-Gentié C (2015) Eco-efficience des itinéraires techniques viticoles: intérêts et adaptations de l’Analyse du Cycle de Vie pour la prise en compte des spécificités de la viticulture de qualité. Application aux itinéraires techniques de production de raisins de Chenin blanc pour vin blancs secs d’AOC en Moyenne Vallée de la Loire. In: Unité de recherche Grappe, Groupe ESA. pp 250. Université Nantes Angers Le Mans, L'UNAM, AngersGoogle Scholar
  39. Renaud-Gentié C, Burgos S, Benoît M (2014) Choosing the most representative technical management routes within diverse management practices: application to vineyards in the Loire Valley for environmental and quality assessment. Eur J Agron 56:19–36CrossRefGoogle Scholar
  40. Renaud-Gentié C, Renaud C, Beauchet S, Jourjon F (2016) Millésime et performances environnementales d’un itinéraire technique viticole évaluées par ACV. Revue Suisse d’arboriculture Viticulture, Arboriculture, Horticulture 48:378–384Google Scholar
  41. Renaud-Gentié C, Van der Werf HMG, Benoît M, Burgos S, Gaillard G, Jourjon F (in prep) Eco-efficiency of vineyard technical management routes, part i: life cycle assessment differentiates contrasted management routes and techniquesGoogle Scholar
  42. Rosenbaum R, Bachmann T, Gold L, Huijbregts MJ, Jolliet O, Juraske R, Koehler A, Larsen H, MacLeod M, Margni M, McKone T, Payet J, Schuhmacher M, Meent D, Hauschild M (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546CrossRefGoogle Scholar
  43. Rouault A, Beauchet S, Renaud-Gentie C, Jourjon F (2016) Life cycle assessment of viticultural technical management routes (TMRs): comparison between an organic and an integrated management route. OENO One 50.
  44. Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229CrossRefGoogle Scholar
  45. Steenwerth KL, Strong EB, Greenhut RF, Williams L, Kendall A (2015) Life cycle greenhouse gas, energy, and water assessment of wine grape production in California. Int J Life Cycle Assess 20:1243–1253CrossRefGoogle Scholar
  46. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2012a) Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts. J Environ Manag 98:73–83CrossRefGoogle Scholar
  47. Vázquez-Rowe I, Villanueva-Rey P, Iribarren D, Teresa Moreira M, Feijoo G (2012b) Joint life cycle assessment and data envelopment analysis of grape production for vinification in the Rías Baixas appellation (NW Spain). J Clean Prod 27:92–102CrossRefGoogle Scholar
  48. Villanueva-Rey P, Vázquez-Rowe I, Moreira MT, Feijoo G (2014) Comparative life cycle assessment in the wine sector: biodynamic vs. conventional viticulture activities in NW Spain. J Clean Prod 65:330–341CrossRefGoogle Scholar
  49. Villanueva-Rey P, Quinteiro P, Arroja L, Dias AC (2017) Circular supplies fueling wine sector. In: LCM, 3-6 september 2017, Luxembourg, LuxembourgGoogle Scholar
  50. Viveros Santos I, Bulle C, Levasseur A, Deschênes L (2018) Regionalized terrestrial ecotoxicity assessment of copper-based fungicides applied in viticulture. Sustainability 10:2522CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.USC 1422 GRAPPE, Univ. Bretagne Loire, Ecole Supérieure d’Agricultures (ESA)-INRAAngersFrance
  2. 2.INRA, UMR 0055 AsterColmarFrance
  3. 3.INRA, UMR System 1230MontpellierFrance

Personalised recommendations