Advertisement

Using LCA in a participatory eco-design approach in agriculture: the example of vineyard management

  • Anthony Rouault
  • Aurélie Perrin
  • Christel Renaud-GentiéEmail author
  • Séverine Julien
  • Frédérique Jourjon
SUSTAINABLE FOOD PRODUCTION AND CONSUMPTION
  • 51 Downloads

Abstract

Purpose

The paper shows how three tools based on life cycle assessment (LCA) were created for an eco-design approach in viticulture, how these tools contributed to the reduction of environmental impacts of technical management routes (TMR), and how they have been used in real-life conditions during workshops organized with two different groups of winegrowers and extension officers in this purpose. This paper is among the first to explore the use of LCA in participatory approaches in agriculture.

Methods

The eco-design approach contains two main phases: (i) suggestion of more eco-efficient solutions by the participants based on their understanding of LCA results of a TMR and (ii) eco-design of the TMR based on initial operations from the case study and alternative operations generated during the previous phase. Three challenges have been identified to use LCA in this approach: (i) making LCA results understandable for participants, (ii) enabling easy manipulation of LCI data and modularity of LCA results, and (iii) need for live LCA results during the collective design process. Three tools have been created to fulfil these objectives: (i) a specific format to display LCA results during workshops, (ii) a “serious game” to build new TMRs, and (iii) a simplified calculation tool to evaluate TMRs.

Results and discussion

Four out of the five case studies explored with these tools were actually improved at the end of the participatory eco-design approach. The specific format used to display LCA results helped identifying the most impactful operations within initial TMRs. The “serious game” stimulated discussions between participants about alternative operations. Representing unit operations with cards was successful to engage participants in the eco-design process. Finally, eco-design parameters available in the “live” LCA tool allowed participants to improve consistency of unit operations with reality and to discuss how to optimize these parameters in order to both reduce environmental impacts and meet the (agronomic, economic, and organizational) requirements of winegrowers. Several limits concerning the use of weighting and single score and the system boundaries are highlighted.

Conclusions

The created tools made it possible to guide discussions towards improving the most impactful practices while allowing other practice changes to be integrated. The proposed approach and the challenges identified for the creation of the tools seem relevant for transposition to other agricultural production sectors. However, while the annual and plot/field scale is interesting for engaging farmers in the production process, larger temporal and geographic scales can help to better integrate certain decision criteria.

Keywords

Eco-design tools Farming system design Innovative design Life cycle assessment Participatory approach Technical management routes Viticulture 

Notes

Acknowledgments

The authors would like to thank winegrowers and extension officers who participated to the workshops, winegrowers who provided data about their viticultural practices, and all people who contributed to the preparation and the execution of the workshops.

Funding information

Agence De l’Environnement et de la Maîtrise de l’Energie (ADEME) and Région Pays de la Loire provided financial support.

Supplementary material

11367_2019_1684_MOESM1_ESM.docx (110 kb)
ESM 1 (DOCX 110 kb)

References

  1. Acosta-Alba I, Andrieu N, Chia E (2018) LCA4CSA: using life cycle assessment to support co-designing climate-smart smallholder farming systems. In: Rattanawan Mungkung SHG (ed) International conference on life cycle assessment of food 2018 (LCA food). Bangkok, Life Cycle Assessment, pp 153–153Google Scholar
  2. Andersson K (2000) LCA of food products and production systems. Int J Life Cycle Assess 5(4):239–248CrossRefGoogle Scholar
  3. ANSES (modified 2019) Le catalogue des produits phytopharmaceutiques et de leurs usages, des matières fertilisantes et des supports de culture autorisés en France 29/05/2019]Google Scholar
  4. Barzman M, Dachbrodt-Saaydeh S (2011) Comparative analysis of pesticide action plans in five European countries. Pest Manag Sci 67(12):1481–1485CrossRefGoogle Scholar
  5. Beauchet S (2016) Évaluation multicritère d’itinéraires techniques viticoles associant l’évaluation environnementale par Analyse du Cycle de Vie avec l’évaluation de la qualité du raisin. Contribution au choix des pratiques pour une amélioration des itinéraires techniques viticoles.: L'Université Bretagne LoireGoogle Scholar
  6. Beauchet S, Rouault A, Thiollet-Scholtus M, Renouf M, Jourjon F, Renaud-Gentié C (2019) Inter-annual variability in the environmental performance of viticulture technical management routes—a case study in the middle Loire Valley (France). Int J Life Cycle Assess 24:253–265CrossRefGoogle Scholar
  7. Botreau R, Beauchet S, Laurent C, Hulin S, Hérisset R, Thiollet-Scholtus M, Kanyarushoki C, Boucault P, Renaud-Gentié C,Jourjon F (2018) Une méthode pour évaluer conjointement performance environnementale et qualité globale des produits–Application aux filières vin et lait. Innov AgronGoogle Scholar
  8. Brentrup F, Küsters J, Kuhlmann H, Lammel J (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. theoretical concept of a LCA method tailored to crop production. Eur J Agron 20(3):247–264CrossRefGoogle Scholar
  9. Christ KL, Burritt RL (2013) Critical environmental concerns in wine production: an integrative review. J Clean Prod 53:232–242CrossRefGoogle Scholar
  10. Czyrnek-Delêtre MM, Jourjon F, Perrin A, Renaud-Gentié C, van der Werf HMG (2018) From the field to the farm - scaling up life cycle assessment towards eco-design at farm-level. 11th international conference on life cycle assessment of food 2018 (LCA food), BangkokGoogle Scholar
  11. De Luca AI, Iofrida N, Leskinen P, Stillitano T, Falcone G, Strano A, Gulisano G (2017) Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: insights from a systematic and critical review. Sci Total Environ 595:352–370CrossRefGoogle Scholar
  12. European Commission (2018) Product Environmental Footprint Category Rules (PEFCR) for still and sparkling wineGoogle Scholar
  13. Fazio S, Castellani V, Sala S, Schau E, Secchi M, Zampori L, Diaconu E (2018) Supporting information to the characterisation factors of recommended EF life cycle impact assessment methods. Vol. EUR 28888 EN, European CommissionGoogle Scholar
  14. Ferrendier S, Mathieux F, Rebitzer G, Simon M, Froelich D (2002) Eco-design guide: environmentally improved product design case studies. Eur Electr Electron Ind 1(4):233–245Google Scholar
  15. Fusi A, Guidetti R, Benedetto G (2014) Delving into the environmental aspect of a Sardinian white wine: from partial to total life cycle assessment. Sci Total Environ 472:989–1000CrossRefGoogle Scholar
  16. Gaviglio C (2015) Consommation de carburant au vignoble : évaluation de l'efficacité des technologies et des réglages. 19th GiESCO Meeting (Group of international Experts of vitivinicultural Systems for CoOperation), GruissanGoogle Scholar
  17. Gaviglio C (2009) Etude des performances énergétiques des matériels viticolesGoogle Scholar
  18. Gazulla C, Raugei M, Fullana-i-Palmer P (2010) Taking a life cycle look at crianza wine production in Spain: where are the bottlenecks? Int J Life Cycle Assess 15(4):330–337CrossRefGoogle Scholar
  19. Gazzarin C (2011) Coûts – machines 2011, Rapport ART 747. Station de recherche Agroscope Reckenholz-Tänikon ART, EttenhausenGoogle Scholar
  20. Knight P, Jenkins JO (2009) Adopting and applying eco-design techniques: a practitioners perspective. J Clean Prod 17(5):549–558CrossRefGoogle Scholar
  21. Kulak M, Nemecek T, Frossard E, Gaillard G (2016) Eco-efficiency improvement by using integrative design and life cycle assessment. The case study of alternative bread supply chains in France. J Clean Prod 112(part 4):2452–2461CrossRefGoogle Scholar
  22. Lacombe C, Couix N, Hazard L (2018) Designing agroecological farming systems with farmers: a review. Agric Syst 165:208–220CrossRefGoogle Scholar
  23. Le Gal PY, Dugué P, Faure G, Novak S (2011) How does research address the design of innovative agricultural production systems at the farm level? A review. Agric Syst 104(9):714–728CrossRefGoogle Scholar
  24. Le Pochat S, Bertoluci G, Froelich D (2007) Integrating ecodesign by conducting changes in SMEs. J Clean Prod 15(7):671–680CrossRefGoogle Scholar
  25. Lewandowska A, Kurczewski P (2010) ISO 14062 in theory and practice—ecodesign procedure. Part 1: structure and theory. Int J Life Cycle Assess 15(8):769–776CrossRefGoogle Scholar
  26. Lewandowska A, Matuszak-Flejszman A (2014) Eco-design as a normative element of environmental management systems—the context of the revised ISO 14001:2015. Int J Life Cycle Assess 19(11):1794–1798CrossRefGoogle Scholar
  27. Loiseau E, Aissani L, Le Féon S, Laurent F, Cerceau J, Sala S, Roux P (2018) Territorial life cycle assessment (LCA): what exactly is it about? A proposal towards using a common terminology and a research agenda. J Clean Prod 176:474–485CrossRefGoogle Scholar
  28. Mac Millan T, Benton TG (2014) Agriculture: engage farmers in research. Nat 509:25–27CrossRefGoogle Scholar
  29. Martin G, Felten B, Duru M (2011) Forage rummy: a game to support the participatory design of adapted livestock systems. Environ Model Softw 26(12):1442–1453CrossRefGoogle Scholar
  30. Martin G, Martin-Clouaire R, Duru M (2012) Farming system design to feed the changing world. A review. Agron Sustain Dev 33(1):131–149CrossRefGoogle Scholar
  31. Martínez-Blanco J, Inaba A, Quiros A, Valdivia S, Milà-i-Canals L, Finkbeiner M (2015) Organizational LCA: the new member of the LCA family—introducing the UNEP/SETAC life cycle initiative guidance document. Int J Life Cycle Assess 20(8):1045–1047CrossRefGoogle Scholar
  32. Mathe S (2014) Integrating participatory approaches into social life cycle assessment: the SLCA participatory approach. Int J Life Cycle Assess 19(8):1506–1514CrossRefGoogle Scholar
  33. Meynard J-M, Dedieu B, Bos AP (2012) Re-design and co-design of farming systems. An overview of methods and practices. In: Darnhofer I, Gibbon D, Dedieu B (eds) Farming systems research into the 21st century: the new dynamic. Springer Netherlands, Dordrecht, pp 405–429CrossRefGoogle Scholar
  34. Neto B, Dias AC, Machado M (2012) Life cycle assessment of the supply chain of a Portuguese wine: from viticulture to distribution. Int J Life Cycle Assess 18(3):590–602CrossRefGoogle Scholar
  35. OIV (2015) OIV Strategic Plan 2015–2019Google Scholar
  36. Peña N, Antón A, Kamilaris A, Fantke P, (2018) Modeling ecotoxicity impacts in vineyard production: Addressing spatial differentiation for copper fungicides. Science of The Total Environment 616-617:796-804Google Scholar
  37. Penavayre S, Lempereur V, Huet A-P, Gillet S, Pernet C, Besnier A, Farrant L, Jolibert F (2016) Using life cycle assessment to identify potential environmental impacts of an agrifood sector: application to the PDO Beaujolais and Burgundia wine sector. BIO Web of Conf 7:01009CrossRefGoogle Scholar
  38. Petti L, Arzoumanidis I, Benedetto G, Bosco S, Cellura M, De Camillis C, Fantin V, Masotti P, Pattara C, Raggi A (2015) Life cycle assessment in the wine sector. Life cycle assessment in the Agri-food sector. Springer, pp 123-184Google Scholar
  39. Point E, Tyedmers P, Naugler C (2012) Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada. J Clean Prod 27:11–20CrossRefGoogle Scholar
  40. Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360(6392):987–992CrossRefGoogle Scholar
  41. Ramos S, Larrinaga L, Albinarrate U, Jungbluth N, Ingolfsdottir GM, Yngvadottir E, Landquist B, Woodhouse A, Olafsdottir G, Esturo A, Zufía J, Perez-Villareal B (2016) SENSE tool: easy-to-use web-based tool to calculate food product environmental impact. Int J Life Cycle Assess 21(5):710–721CrossRefGoogle Scholar
  42. Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T, Schmidt WP, Suh S, Weidema BP, Pennington DW (2004) Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications. Environ Int 30(5):701–720CrossRefGoogle Scholar
  43. Renaud-Gentié C (2015) Eco-efficience des itinéraires techniques viticoles: intérêt et adaptations de l'analyse du cycle de vie pour la prise en compte des spécificités de la viticulture de qualité, application aux itinéraires techniques de production de raisins de Chenin blanc pour vins blancs secs d’AOC en Moyenne Vallée de la Loire: Université Nantes-Angers-Le MansGoogle Scholar
  44. Renaud-Gentié C, Dieu V, Thiollet-Scholtus M, Perrin A, Julien S, Beauchet S, Jourjon F, Mérot A (2018) Addressing organic viticulture environmental burdens by a better understanding of inter-annual and site-related causes of impacts variations. 11th international conference on life cycle assessment of food 2018 (LCA food), BangkokGoogle Scholar
  45. Renouf MA, Poggio M, Collier A, Price N, Schroeder BL, Allsopp PG (2018a) Customised life cycle assessment tool for sugarcane (CaneLCA)—a development in the evaluation of alternative agricultural practices. Int J Life Cycle Assess 23(11):2150–2164CrossRefGoogle Scholar
  46. Renouf MA, Renaud-Gentié C, Perrin A, van der Werf HMG, Kanyarushoki C, Jourjon F (2018b) Effectiveness criteria for customised agricultural life cycle assessment tools. J Clean Prod 179:246–254CrossRefGoogle Scholar
  47. Rouault A, Beauchet S, Renaud-Gentie C, Jourjon F (2016) Life cycle assessment of viticultural technical management routes (TMRs): comparison between an organic and an integrated management route. OENO One 50(2):77–89CrossRefGoogle Scholar
  48. Rousseaux P, Gremy-Gros C, Bonnin M, Henriel-Ricordel C, Bernard P, Floury L, Staigre G, Vincent P (2017) “Eco-tool-seeker”: a new and unique business guide for choosing ecodesign tools. J Clean Prod 151:546–577CrossRefGoogle Scholar
  49. Roy P, Nei D, Orikasa T, Xu Q, Okadome H, Nakamura N, Shiina T (2009) A review of life cycle assessment (LCA) on some food products. J Food Eng 90(1):1–10CrossRefGoogle Scholar
  50. Rugani B, Vázquez-Rowe I, Benedetto G, Benetto E (2013) A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. J Clean Prod 54:61–77CrossRefGoogle Scholar
  51. Sala S, Anton A, McLaren SJ, Notarnicola B, Saouter E, Sonesson U (2017) In quest of reducing the environmental impacts of food production and consumption. J Clean Prod 140(part 2):387–398CrossRefGoogle Scholar
  52. Sala S, Cerutti AK, Pant R (2018) Development of a weighting approach for the environmental footprint. Publications Office of the European Union, LuxembourgGoogle Scholar
  53. Sébillotte M (1974) Agronomie et agriculture, essai d'analyse des tâches de l'agronome. Cahiers de l'ORSTOM, série Biologie 24:3–25Google Scholar
  54. Van Ruyskensvelde J-P, Herbin C, Audeguin L, Aveline N, Bouvier M, Cahurel J-Y, Cailleau R, Chantelot E, Codis S, Delpuech X, Dufour M-C, Dufourcq T, Gaviglio C, Gontier L, Le Cunff L, Lempereur V, Payan J-C, Petit A, Raynal M, Riou C, Rochard J, Sentenac G, Verges A, Schio L, Boy A, Gautier J (2017) Guide de l'Agroécologie en ViticultureGoogle Scholar
  55. Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2012) Environmental analysis of Ribeiro wine from a timeline perspective: harvest year matters when reporting environmental impacts. J Environ Manag 98:73–83CrossRefGoogle Scholar
  56. Villanueva-Rey P, Vázquez-Rowe I, Moreira MT, Feijoo G (2014) Comparative life cycle assessment in the wine sector: biodynamic vs. conventional viticulture activities in NW Spain. J Clean Prod 65:330–341CrossRefGoogle Scholar
  57. Viveros Santos I, Bulle C, Levasseur A, Deschênes L (2018) Regionalized Terrestrial Ecotoxicity Assessment of Copper-Based Fungicides Applied in Viticulture. Sustainability 10 (7):2522Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.USC 1422 GRAPPE, Ecole Supérieure d’Agricultures (ESA)-INRA, SFR 4207 QUASAVUniv. Bretagne LoireAngersFrance
  2. 2.ADEME, Service Forêt, Alimentation, BioéconomieAngersFrance

Personalised recommendations