Advertisement

The International Journal of Life Cycle Assessment

, Volume 24, Issue 12, pp 2220–2237 | Cite as

Prospective cost and environmental impact assessment of battery and fuel cell electric vehicles in Germany

  • Kai BekelEmail author
  • Stefan Pauliuk
MODERN INDIVIDUAL MOBILITY

Abstract

Purpose

The goal of this study was to provide a holistic, reliable, and transparent comparison of battery electric vehicles (BEVs) and fuel cell electric vehicles (FCVs) regarding their environmental impacts (EI) and costs over their whole life cycle. The comprehensive knowledge about EI and costs forms the basis on which to decide which technology should be favored for the future of mobility.

Methods

Therefore, a holistic and transparent comparative life cycle assessment (LCA), using the ReCiPe 2016 method, and a life cycle costing were conducted. Special attention was paid to the fuel supply infrastructure for BEV and FCV as these have not been sufficiently considered in previous research. The required infrastructure was calculated for six million electric vehicles (EVs) and the EI and costs were allocated proportional on the functional unit of 1 km driven with an EV. Different scenarios regarding electricity mix, range of the BEV, and vehicle lifetime were calculated. In order to ensure transparency, all inventories and calculations were published in the attached Electronic supplementary material (ESM).

Results and discussion

Detailed results were presented for the impact categories global warming potential (GWP), human toxicity potential non-carcinogenic (HTPnc), surplus ore potential (SOP), and particulate matter formation potential (PMFP). Aggregated results for all midpoint impact categories of the ReCiPe method can be found in the ESM. It was shown that BEVs achieve lower EI than FCVs in most impact categories (e.g., GWP: BEV: 1.40E-01, FCV: 1.68E-01 kg CO2-eq./km) and that the total costs of ownership are as well lower for BEVs (68,900 € vs. 130,100 €). Further, it was found that the fuel supply infrastructure—without electricity supply—contributes a considerable amount to the overall impact per kilometer driven (e.g., 3.7% and 3.3% of the GWP for BEV and FCV, respectively).

Conclusions

Considering mid-size vehicles like the VW e-Golf, it was concluded that BEVs have today a better environmental and financial performance than FCVs. However, the range of the BEV is lower than the range of the FCV (200 vs. 530 km) and both technologies have different stages of maturity. Moreover, the study showed that the fuel supply infrastructure is an important contributor to the overall life cycle impacts and that it is therefore indispensable to include the infrastructure in LCA of electric vehicles. Based on the results, recommendations to utilize the advantage of both BEV (high energy efficiency, lower costs) and FCV (long-distance capability) were made.

Keywords

Battery electric vehicles Fuel cell electric vehicles Life cycle assessment Life cycle costing Transport Sustainable transportation 

Abbreviations

BEV

Battery electric vehicle

BOP

Balance of plant (control unit for the fuel cell)

CAPEX

Capital expenditures (investment costs)

EI

Environmental impacts

EoL

End of life

EVs

Electric vehicles

FCVs

Fuel cell vehicles

FLH

Full-load hours

FSI

Fuel supply infrastructure (chargers for BEVs and the hydrogen production and distribution in case of FCVs)

GHG

Greenhouse gases

GWP

Global warming potential

HTPnc

Human toxicity potential

IC

Impact categories

ICEV

Internal combustion engine vehicles

LCA

Life cycle assessment

LCC

Life cycle costing

LCIA

Life cycle impact assessment

SOP

Surplus ore potential

PMFP

Particulate matter formation potential

SFT

Surcharges, fees, and taxes, which has to be paid for electricity

TCO

Total cost of ownership

WaM

Wearing and maintenance

Notes

Acknowledgments

We thank T. Smolinka (Fraunhofer ISE) and N. Rice (ITM Power) for their help in preparing the inventories for the PEM electrolyzer.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11367_2019_1640_MOESM1_ESM.xlsx (121 kb)
ESM 1 (XLSX 427 kb)
11367_2019_1640_MOESM2_ESM.xlsx (121 kb)
ESM 2 (XLSX 120 kb)
11367_2019_1640_MOESM3_ESM.xlsx (5.3 mb)
ESM 3 (XLSX 5431 kb)

References

  1. ABB (2018a) Electric Vehicle Charging Infrastructure: Terra multi-standard DC charging station 23. http://search-ext.abb.com/library/Download.aspx?DocumentID=4EVC301503-LFEN&LanguageCode=en&DocumentPartId=&Action=Launch. Accessed 17 May 2018
  2. ABB (2018b) Electric Vehicle Charging Infrastructure: Terra multi-standard DC charging station 53. http://search-ext.abb.com/library/Download.aspx?DocumentID=4EVC204303-LFEN&LanguageCode=en&DocumentPartId=&Action=Launch. Accessed 17 May 2018
  3. ABL (2018) Technisches Datenblatt WALLBOX eMH1. https://www.abl.de/global/downloads/datenblaetter/emh1-de/ABL_1W1101_D_a.pdf. Accessed 17 May 2018
  4. ADAC (2018) Autokosten Frühjahr/Sommer 2018. Kostenübersicht für über 1.800 aktuelle Neuwagen-Modelle, MünchenGoogle Scholar
  5. Adolf J, Balzer C, Lois J, Schabla U, Fischedick M, Arnold K, Pastowski A, Schüwer D (2017) SHELL WASSERSTOFF-STUDIE: ENERGIE DER ZUKUNFT? Nachhaltige Mobilität durch Brennstoffzelle und H2Google Scholar
  6. Aggeler D, Canales F, Zelaya H, La Parra D, Coccia A, Butcher N, Apeldoorn O (2010) Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids. In: IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010: 11 - 13 Oct. 2010, Gothenburg, Sweden. IEEE, Piscataway, NJ, pp 1–8Google Scholar
  7. Ahmadi P, Kjeang E (2017) Realistic simulation of fuel economy and life cycle metrics for hydrogen fuel cell vehicles. Int. J. Energy Res. 41(5):714–727.  https://doi.org/10.1002/er.3672 CrossRefGoogle Scholar
  8. Asdrubali F, Baldinelli G, D’Alessandro F, Scrucca F (2015) Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew Sust Energ Rev 42:1113–1122.  https://doi.org/10.1016/j.rser.2014.10.082 CrossRefGoogle Scholar
  9. Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy. Appl. Energy 101:103–111.  https://doi.org/10.1016/j.apenergy.2012.03.021 CrossRefGoogle Scholar
  10. Bauer C, Hofer J, Althaus H-J, Del Duce A, Simons A (2015) The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl Energy 157:871–883.  https://doi.org/10.1016/j.apenergy.2015.01.019 CrossRefGoogle Scholar
  11. Bi Z, Song L, de KR, Mi CC, Keoleian GA (2015) Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system. Appl. Energy 146:11–19.  https://doi.org/10.1016/j.apenergy.2015.02.031 CrossRefGoogle Scholar
  12. Brakelmann H (2004) Netzverstärkungs-Trassen zur Übertragung von Windenergie: Freileitung oder Kabel?Google Scholar
  13. Brunet J, Kotelnikova A, Ponssard J-P (2015) The deployment of BEV and FCEV in 2015. Ecole Polytechnique CNRSGoogle Scholar
  14. Bubeck S, Tomaschek J, Fahl U (2016) Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany. Transp Policy 50:63–77.  https://doi.org/10.1016/j.tranpol.2016.05.012 CrossRefGoogle Scholar
  15. Bundesministerium für Verkehr und digitale Infrastruktur (2017) BMVI - Startschuss für das Bundesprogramm LadeinfrastrukturGoogle Scholar
  16. Bundesnetzagentur (2016) Monitoringbericht 2016Google Scholar
  17. Burkhardt J, Patyk A, Tanguy P, Retzke C (2016) Hydrogen mobility from wind energy - A life cycle assessment focusing on the fuel supply. Appl Energy 181:54–64.  https://doi.org/10.1016/j.apenergy.2016.07.104 CrossRefGoogle Scholar
  18. Chardonnet C, Vos L d, Genoese F, Roig G, Giordano V, Rapoport S, Bart F, Lacroix T d, Ha T v, Genabet B, Lanoix J-C, Vanhoudt W (2017) Study on early business cases for H2 in energy storage and more broadly power to H2 applications, vol 228. FCH-JU, Brussels, BelgiumGoogle Scholar
  19. Cooney G, Hawkins TR, Marriott J (2013) Life Cycle Assessment of Diesel and Electric Public Transportation Buses. J Ind Ecol 451(7179):n/a–n/a.  https://doi.org/10.1111/jiec.12024 CrossRefGoogle Scholar
  20. dena (2012) dena - Verteilnetzstudie. Ausbau - und Innovationsbedarf der Strom - verteilnetze in Deutschland bis 2030Google Scholar
  21. Destatis (2017) Abfallbilanz (Abfallaufkommen/-verbleib, Abfallintensität, Abfallaufkommen nach Wirtschaftszweigen) - 2015Google Scholar
  22. Ekvall T, Assefa G, Björklund A, Eriksson O, Finnveden G (2007) What life-cycle assessment does and does not do in assessments of waste management. Waste Manage. (Oxford) 27(8):989–996.  https://doi.org/10.1016/j.wasman.2007.02.015 CrossRefGoogle Scholar
  23. Ellingsen LA-W, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. J Ind Ecol 18(1):113–124.  https://doi.org/10.1111/jiec.12072 CrossRefGoogle Scholar
  24. EnBW AG (2018) Stromnetz - Transport - Spannungsebenen. https://www.enbw.com/energie-entdecken/verteilung-und-transport/stromnetz/. Accessed 15 May 2018
  25. Evangelisti S, Tagliaferri C, Brett DJL, Lettieri P (2017) Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles. J Cleaner Prod 142:4339–4355.  https://doi.org/10.1016/j.jclepro.2016.11.159 CrossRefGoogle Scholar
  26. Fernández RÁ, Cilleruelo FB, Martínez IV (2016) A new approach to battery powered electric vehicles. A hydrogen fuel-cell-based range extender system. Int J Hydrog Energy 41(8):4808–4819.  https://doi.org/10.1016/j.ijhydene.2016.01.035 CrossRefGoogle Scholar
  27. German Federal Government (2011) Regierungsprogramm Elektromobilität. https://www.bmbf.de/files/programm_elektromobilitaet(1).pdf. Accessed 08 May 2018
  28. golftechnischedaten.de (2017) Golf 1.4 TSI BMT (125 ps) Comfortline 5-Türen. https://golftechnischedaten.de/golf-1-4-tsi-bmt-125-ps-comfortline-5-turen/. Accessed 27 Dec 2018
  29. Graedel TE, Allwood J, Birat J-P, Buchert M, Hagelüken C, Reck BK, Sibley SF, Sonnemann G (2011) What Do We Know About Metal Recycling Rates? J Ind Ecol 15(3):355–366.  https://doi.org/10.1111/j.1530-9290.2011.00342.x CrossRefGoogle Scholar
  30. Haddadian G, Khodayar M, Shahidehpour M (2015) Accelerating the Global Adoption of Electric Vehicles: Barriers and Drivers. The Elect J 28(10):53–68.  https://doi.org/10.1016/j.tej.2015.11.011 CrossRefGoogle Scholar
  31. Hagman J, Ritzén S, Stier JJ, Susilo Y (2016) Total cost of ownership and its potential implications for battery electric vehicle diffusion. Res Transp Bus Manag 18:11–17.  https://doi.org/10.1016/j.rtbm.2016.01.003 CrossRefGoogle Scholar
  32. Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J Ind Ecol 17(1):53–64.  https://doi.org/10.1111/j.1530-9290.2012.00532.x CrossRefGoogle Scholar
  33. Held M, Graf R, Wehner D, Eckert S, Faltenbacher M, Weidner S, Braune O (2016) Abschlussbericht: Bewertung der Praxistauglichkeit und Umweltwirkungen von Elektrofahrzeugen, BerlinGoogle Scholar
  34. Helms H, Jöhrnes J, Hanusch J, Höpfner U, Lambrecht U, Pehnt M (2011) Ergebnisbericht UMBReLA, HeidelbergGoogle Scholar
  35. Hirscher M (2010) Handbook of hydrogen storage. New materials for future energy storage. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  36. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2016) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22(2):138–147.  https://doi.org/10.1007/s11367-016-1246-y CrossRefGoogle Scholar
  37. ISO (2006a) ISO 14040:2006, Environmental management — Life cycle assessment — Principles and framework. https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en. Accessed 11 May 2018
  38. ISO (2006b) ISO 14044:2006, Environmental management — Life cycle assessment — Requirements and guidelines. https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en. Accessed 11 May 2018
  39. Kaltschmitt M, Streicher W (2009) Stromerzeugung aus Wasserkraft. In: Kaltschmitt M, Streicher W (eds) Regenerative Energien in Österreich: Grundlagen, Systemtechnik, Umweltaspekte, Kostenanalysen, Potenziale, Nutzung. Vieweg+Teubner, Wiesbaden, pp 59–94CrossRefGoogle Scholar
  40. Kara S, Li W, Sadjiva N (2017) Life Cycle Cost Analysis of Electrical Vehicles in Australia. Procedia CIRP 61:767–772.  https://doi.org/10.1016/j.procir.2016.11.179 CrossRefGoogle Scholar
  41. Kley F (2011) Ladeinfrastruktur für Elektrofahrzeuge: Entwicklung und Bewertung einer Ausbaustrategie auf Basis des Fahrverhaltens. Zugl.: Karlsruhe, KIT, Diss., 2011, Karlsruher Instituts für TechnologieGoogle Scholar
  42. Koj JC, Wulf C, Schreiber A, Zapp P (2017) Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis. Energies 10(7):860.  https://doi.org/10.3390/en10070860 CrossRefGoogle Scholar
  43. Kopp M, Coleman D, Stiller C, Scheffer K, Aichinger J, Scheppat B (2017) Energiepark Mainz. Technical and economic analysis of the worldwide largest Power-to-Gas plant with PEM electrolysis. Int. J. Hydrogen Energy 42(19):13311–13320.  https://doi.org/10.1016/j.ijhydene.2016.12.145 CrossRefGoogle Scholar
  44. Kost C, Shammugam S, Jülch V, Nguyen H-T, Schlegl T (2018) Stromgestehungskosten erneuerbare Energien; Fraunhofer ISE. März. Freiburg, Germany, p 2018Google Scholar
  45. LC-impact (2018) Methodology. http://lc-impact.eu/methodology-home. Accessed 14 Jun 2018
  46. Lombardi L, Tribioli L, Cozzolino R, Bella G (2017) Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA. Int. J. Life Cycle Assess. 22(12):1989–2006.  https://doi.org/10.1007/s11367-017-1294-y CrossRefGoogle Scholar
  47. Lucas A, Alexandra Silva C, Costa Neto R (2012a) Life cycle analysis of energy supply infrastructure for conventional and electric vehicles. Energy Policy 41:537–547.  https://doi.org/10.1016/j.enpol.2011.11.015 CrossRefGoogle Scholar
  48. Lucas A, Neto RC, Silva CA (2012b) Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector. Int. J. Hydrogen Energy 37(15):10973–10985.  https://doi.org/10.1016/j.ijhydene.2012.04.127 CrossRefGoogle Scholar
  49. Luo L, van der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sust Energ Rev 13(6-7):1613–1619.  https://doi.org/10.1016/j.rser.2008.09.024 CrossRefGoogle Scholar
  50. Maack (2008) Generation, of the energy carrier HYDROGEN: In context with electricity buffering generation through fuel cellsGoogle Scholar
  51. Mendoza J-MF, Josa A, Rieradevall J, Gabarrell X (2016) Environmental Impact of Public Charging Facilities for Electric Two-Wheelers. J. Ind. Ecol. 20(1):54–66.  https://doi.org/10.1111/jiec.12270 CrossRefGoogle Scholar
  52. Mineralölwirtschaftsverband (2018) Monatlich aktualisierte Kraftstoffpreise als Durchschnittswert Deutschland. https://www.mwv.de/statistiken/verbraucherpreise/. Accessed 15 Jun 2018
  53. Miotti M, Hofer J, Bauer C (2017) Integrated environmental and economic assessment of current and future fuel cell vehicles. Int. J. Life Cycle Assess. 22(1):94–110.  https://doi.org/10.1007/s11367-015-0986-4 CrossRefGoogle Scholar
  54. Netze BW (2017) Höhe der Durchschnittsverluste je Spannungsebene 2015Google Scholar
  55. Nordelöf A, Messagie M, Tillman A-M, Ljunggren Söderman M, van Mierlo J (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? Int. J. Life Cycle Assess. 19(11):1866–1890.  https://doi.org/10.1007/s11367-014-0788-0 CrossRefGoogle Scholar
  56. Notter DA, Kouravelou K, Karachalios T, Daletou MK, Haberland NT (2015) Life cycle assessment of PEM FC applications. Electric mobility and μ-CHP. Energy Environ. Sci. 8(7):1969–1985.  https://doi.org/10.1039/C5EE01082A CrossRefGoogle Scholar
  57. NPE (2011) Zweiter Bericht der Nationalen Plattform ElektromobilitätGoogle Scholar
  58. NPE (2012) Fortschrittsbericht der Nationalen Plattform Elektromobilität (Dritter Bericht)Google Scholar
  59. NPE (2015) Ladeinfrastruktur für Elektrofahrzeuge in Deutschland: Statusbericht und Handlungsempfehlungen 2015Google Scholar
  60. Oswald BR (2007) 380-kV-Salzburgleitung: Auswirkungen der möglichen (Teil)Verkabelung des Abschnittes Tauern-Salzach neuGoogle Scholar
  61. Parks G, Boyd R, Cornish J, Remick R (2014) Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems IntegrationGoogle Scholar
  62. Paster MD, Ahluwalia RK, Berry G, Elgowainy A, Lasher S, McKenney K, Gardiner M (2011) Hydrogen storage technology options for fuel cell vehicles: Well-to-wheel costs, energy efficiencies, and greenhouse gas emissions. Int J Hydrog Energy 36(22):14534–14551.  https://doi.org/10.1016/j.ijhydene.2011.07.056 CrossRefGoogle Scholar
  63. Plenz M (2017) Potenzialanalyse Überschussstrom für Power-to-Heat und Power-to-Gas, Studie zur Nutzung überschüssigen erneuerbaren Stroms für die Erzeugung von Wärme/Gas in den Regionen Potsdam/PotsdamMittelmark und Lausitz-SpreewaldGoogle Scholar
  64. Pollet BG, Staffell I, Shang JL (2012) Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochim. Acta 84:235–249.  https://doi.org/10.1016/j.electacta.2012.03.172 CrossRefGoogle Scholar
  65. Reddi K, Elgowainy A, Sutherland E (2014) Hydrogen refueling station compression and storage optimization with tube-trailer deliveries. Int J Hydrogen Energy 39(33):19169–19181.  https://doi.org/10.1016/j.ijhydene.2014.09.099 CrossRefGoogle Scholar
  66. Reddi K, Elgowainy A, Rustagi N, Gupta E (2017) Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen. Int J Hydrog Energy 42(34):21855–21865.  https://doi.org/10.1016/j.ijhydene.2017.05.122 CrossRefGoogle Scholar
  67. Reuter B, Faltenbacher M, Schuller O, Whitehouse N, Whitehouse S (2017) New Bus ReFuelling for European Hydrogen Bus Depots - High-Level Techno-Economic Project Summary Report. Leinfelden-Echterdingen, GermanyGoogle Scholar
  68. Rippel KM, Wiede T, Meinecke M, König R (2017) Netzentwicklungsplan Strom 2030. ZWEITER ENTWURF DER ÜBERTRAGUNGS NETZBETREIBERGoogle Scholar
  69. Robinius M, Linssen J, Grube T, Reuß M, Stenzel P, Syranidis K, Kuckertz P, Stolten D (2018) Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles, vol 408. Julich, GermanyGoogle Scholar
  70. Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D (2015) Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrogen Energy 40(12):4285–4294.  https://doi.org/10.1016/j.ijhydene.2015.01.123 CrossRefGoogle Scholar
  71. Schroeder A, Traber T (2012) The economics of fast charging infrastructure for electric vehicles. Energy Policy 43:136–144.  https://doi.org/10.1016/j.enpol.2011.12.041 CrossRefGoogle Scholar
  72. Shafiei E, Davidsdottir B, Leaver J, Stefansson H, Asgeirsson EI (2017) Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: A simulation-based comparison between hydrogen and electricity. J. Cleaner Prod. 141:237–247.  https://doi.org/10.1016/j.jclepro.2016.09.064 CrossRefGoogle Scholar
  73. Simons A, Bauer C (2015) A life-cycle perspective on automotive fuel cells. Appl. Energy 157:884–896.  https://doi.org/10.1016/j.apenergy.2015.02.049 CrossRefGoogle Scholar
  74. Statista (2018)Autogas-Tankstellen in Deutschland bis 2018 | Statistik. https://de.statista.com/statistik/daten/studie/154361/umfrage/anzahl-der-autogas-tankstellen-in-deutschland/. Accessed 13 Jun 2018
  75. Tagliaferri C, Evangelisti S, Acconcia F, Domenech T, Ekins P, Barletta D, Lettieri P (2016) Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chem. Eng. Res. Des. 112:298–309.  https://doi.org/10.1016/j.cherd.2016.07.003 CrossRefGoogle Scholar
  76. Teichmann D, Arlt W, Wasserscheid P (2012) Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy. Int. J. Hydrogen Energy 37(23):18118–18132.  https://doi.org/10.1016/j.ijhydene.2012.08.066 CrossRefGoogle Scholar
  77. Thomas CE (2009) Fuel cell and battery electric vehicles compared. Int. J. Hydrogen Energy 34(15):6005–6020.  https://doi.org/10.1016/j.ijhydene.2009.06.003 CrossRefGoogle Scholar
  78. Tietge U, Díaz S, Yang Z, Mock P (2017) From laboratory to road international: A comparison of official and real-world fuel consumption and CO2 values for passenger cars in Europe. the United States, China, and Japan, BerlinGoogle Scholar
  79. Toyota (2016) Mirai Product Information 2016. https://pressroom.toyota.com/releases/2016+toyota+mirai+fuel+cell+product.htm. Accessed 14 May 2018
  80. TransnetBW (2018) Strukturdaten - Netzverluste für das Jahr 2015. https://www.transnetbw.de/de/transparenz/marktdaten/strukturdaten#jahr_2015verl. Accessed 15 May 2018
  81. Umweltbundesamt (2016) Kennzahlen von Anlagen mit Kraft-Wärme-Kopplung (KWK)Google Scholar
  82. US Environmental Protection Agency (2017) Model Year 2017 Green Vehicle Guide. https://www.fueleconomy.gov/feg/EPAGreenGuide/pdf/all_alpha_17.pdf. Accessed 14 May 2018
  83. Varun BIK, Prakash R (2009) LCA of renewable energy for electricity generation systems--A review. Renew Sust Energ Rev 13(5):1067–1073.  https://doi.org/10.1016/j.rser.2008.08.004 CrossRefGoogle Scholar
  84. Viktorsson L, Heinonen J, Skulason J, Unnthorsson R (2017) A Step towards the Hydrogen Economy--A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies 10(6):763.  https://doi.org/10.3390/en10060763 CrossRefGoogle Scholar
  85. Volkswagen AG (2010) The Golf: Environmental Commendation Background Report. https://fenix.tecnico.ulisboa.pt/downloadFile/3779580640224/L7_2_101129_VW_HB_Golf_GB.pdf. Accessed 14 May 2018
  86. Volkswagen AG (2018) Der neue e-Golf: Preise - Ausstattungen - Technische Daten. https://www.volkswagen.at/e-golf/infomaterial. Accessed 14 May 2018
  87. VW (2018) VW e-Golf | Elektroauto | Volkswagen Deutschland. https://www.volkswagen.de/de/models/e-golf.html. Accessed 15 Jun 2018
  88. Wallbox (2018) Produkt Wallbox: Wallbox Commander. https://www.wallbox.com/de/produkt/commander/. Accessed 17 May 2018
  89. Wang G (2011) Advanced vehicles: Costs, energy use, and macroeconomic impacts. J Power Sources 196(1):530–540.  https://doi.org/10.1016/j.jpowsour.2010.07.009 CrossRefGoogle Scholar
  90. Weidner S, Faltenbacher M, François I, Thomas D, Skùlason JB, Maggi C (2018) Feasibility study of large scale hydrogen power-to-gas applications and cost of the systems evolving with scaling up in Germany, Belgium and Iceland. Int J Hydrogen Energy 43(33):15625–15638.  https://doi.org/10.1016/j.ijhydene.2018.06.167 CrossRefGoogle Scholar
  91. Wirges J (2016) Planning the Charging Infrastructure for Electric Vehicles in Cities and Regions. Karlsruher Instituts für TechnologieGoogle Scholar
  92. Wu G, Inderbitzin A, Bening C (2015) Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy 80:196–214.  https://doi.org/10.1016/j.enpol.2015.02.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Industrial Ecology Freiburg, Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany

Personalised recommendations