Assessing variability in carbon footprint throughout the food supply chain: a case study of Valencian oranges

  • Javier Ribal
  • Vicente Estruch
  • Gabriela Clemente
  • M. Loreto Fenollosa
  • Neus SanjuánEmail author



This study aims to analyse the variability in the carbon footprint (CF) of organically and conventionally produced Valencian oranges (Spain), including both farming and post-harvest (PH) stages. At the same time, two issues regarding sample representativeness are addressed: how to determine confidence intervals from small samples and how to calculate the aggregated mean CF (and its variability) when the inventory is derived from different sources.


The functional unit was 1 kg of oranges at a European distribution centre. Farming data come from a survey of two samples of organic and conventional farms; PH data come from one PH centre; and data on exportation to the main European markets were obtained from official secondary sources. To assess the variability of the farming subsystem, a bootstrap of the mean CF was performed. The variability of the PH subsystem was assessed through a Monte Carlo simulation and a subsequent subsampling bootstrap. A weighted discrete distribution of the CF of distribution and end-of-life (EoL) was built, which was also bootstrapped. The empirical distribution of the overall CF was obtained by summing all iterations of the three bootstrap procedures of the subsystems.

Results and discussion

The CF of the baseline scenarios for conventional and organic production were 0.82 and 0.67 kg CO2 equivalent·kg orange−1, respectively; the difference between their values was due mainly to differences in the farming subsystem. Distribution and EoL was the subsystem contributing the most to the CF (59.3 and 75.7% of the total CF for conventional and organic oranges, respectively), followed by the farming subsystem (34.1 and 19.8% for conventional and organic oranges, respectively). The confidence intervals for the CF of oranges were 0.72–0.92 and 0.61–0.82 kg CO2 equivalent·kg orange−1 for conventional and organic oranges, respectively, and a significant difference was found between them. If organic production were to reach 50% of the total exported production, the CF would be reduced by 5.4–8.4%.


The case study and the methods used show that bootstrap techniques can help to test for the existence of significant differences and estimate confidence intervals of the mean CF. Furthermore, these techniques allow several CF sources to be combined so as to estimate the uncertainty in the mean CF estimate. Assessing the variability in the mean CF (or in other environmental impacts) gives a more reliable measure of the mean impact.


Bootstrap Carbon footprint Confidence interval Oranges Organic Variability 



We greatly thank Angel Puchol of Frío Mediterráneo S.A. Museros (Spain) for the data on post-harvest treatment and Anecoop for the data on packaging.

Funding information

The Spanish Ministerio de Economía y Competitividad for provided financial support in the project Design of a life-cycle indicator for sustainability in agricultural systems (CTM2013-47340-R).


  1. Agustí M, Martínez-Fuentes A, Mesejo C (2002) Citrus fruit quality. Physiological basis and techniques of improvement. Agrociencia 6(2):1–16Google Scholar
  2. Altman N, Krzywinski M (2017) Points of significance: P values and the search for significance. Nat Methods 14:1–4Google Scholar
  3. De Backer ED, Aertsens J, Vergucht S, Steurbaut W (2009) Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA): a case study of leek production. Brit Food J 111(10):1028–1061CrossRefGoogle Scholar
  4. Beccali M, Cellura M, Iudicello M, Mistretta M (2009) Resource consumption and environmental impacts of the Agrofood sector: life cycle assessment of Italian citrus-based products. J Environ Manag 43(4):707–724CrossRefGoogle Scholar
  5. Bessou C, Basset-Mens C, Latunussa C, Vélu A, Heitz H, Vannière H, Caliman JP (2016) Partial modelling of the perennial crop cycle misleads LCA results in two contrasted case studies. Int J Life Cycle Assess 21(3):297–310CrossRefGoogle Scholar
  6. Boone L, De Meester S, Vandecasteele B, Muylle H, Roldán-Ruiz I, Nemecek T, Dewulf J (2016) Environmental life cycle assessment of grain maize production: an analysis of factors causing variability. Sci Total Environ 553:551–564CrossRefGoogle Scholar
  7. Boulard T, Raeppel C, Brun R, Lecompte F, Hayer F, Carmassi G, Gaillard G (2011) Environmental impact of greenhouse tomato production in France. Agron Sustain Dev 31(4):757–777CrossRefGoogle Scholar
  8. CAMACCDR (2017a) Generalitat Valenciana. Conselleriad’Agricultura, Med Ambient, Canvi Climatic i Desenvolupament Rural. Informe del Sector Agrari Valencià 2015. Available at: Accessed 9 March 2017
  9. CAMACCDR (2017b) Generalitat Valenciana. Conselleria d’Agricultura, Med Ambient, Canvi Climatic i Desenvolupament Rural. Informe sobre la superficie ecológica 2016 Comunitat Valenciana. Available at: Accessed 9 March 2017
  10. Canellada F, Laca A, Laca A, Díaz M (2018) Environmental impact of cheese production: a case study of a small-scale factory in southern Europe and global overview of carbon footprint. Sci Total Environ 635:167–177CrossRefGoogle Scholar
  11. CAPDR (2017) Junta de Andalucía. Consejería de Agricultura, Pesca y Desarrollo Rural. Observatorio de precios y mercados. Available at: Accessed 10 March 2017
  12. Chen X, Corson MS (2014) Influence of emission-factor uncertainty and farm-characteristic variability in LCA estimates of environmental impacts of French dairy farms. J Clean Prod 81:150–157CrossRefGoogle Scholar
  13. Chernick MR (2008) Bootstrap methods: a guide for practitioners and researchers. John Wilery & Sons. Inc., Hoboken, New JerseyGoogle Scholar
  14. Chernick MR, LaBudde RA (2011) An introduction to bootstrap methods with applications to R. John Wiley & Sons, Hoboken, New JerseyGoogle Scholar
  15. Coltro L, Mourad AL, Kletecke RM, Mendonça TA, Germer SPM (2009) Assessing the environmental profile of orange production in Brazil. Int J Life Cycle Assess 14(7):656–664CrossRefGoogle Scholar
  16. Escobar N, Ribal J, Clemente G, Rodrigo A, Pascual A, Sanjuán N (2015) Uncertainty analysis in the environmental assessment of an integrated management system for restaurants and catering waste. Int J Life Cycle Assess 20(2):244–262CrossRefGoogle Scholar
  17. European Union (2008) Commission Regulation 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Available at: Accessed 15 September 2017
  18. Eurostat (2018a) Recycling rates for packaging waste. Available at: Accessed 11 November 2018
  19. Eurostat (2018b) Recovery rates for packaging waste. Available at: Accessed 11 November 2018
  20. FEPEX (2017) Federación Española de Asociaciones de Productores Exportadores de Frutas, Hortalizas, Flores y Plantas vivas. EXPORTACIÓN/IMPORTACIÓN ESPAÑOLAS DE FRUTAS Y HORTALIZAS. Available at: Accessed 11 January 2017
  21. Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14:91–94CrossRefGoogle Scholar
  22. Heidari MD, Mobli H, Omid M, Rafiee S, Marbini VJ, Elshout PM, Huijbregts MA (2017) Spatial and technological variability in the carbon footprint of durum wheat production in Iran. Int J Life Cycle Assess 22(12):1893–1900CrossRefGoogle Scholar
  23. Heijungs R, Huijbregts M (2004) A review of approaches to treat uncertainty in LCA. In: Pahl C, Schmidt S, Jakeman T (eds) iEMSs 2004 International Congress: complexity and integrated resources management. International Environmental Modeling and Software Society, OsnabrueckGoogle Scholar
  24. Henriksson PJ, Heijungs R, Dao HM, Phan LT, de Snoo GR, Guinée JB (2015) Product carbon footprints and their uncertainties in comparative decision contexts. PLoS One 10(3):e0121221CrossRefGoogle Scholar
  25. Henson S, Reardon T (2005) Private agri-food standards: implications for food policy and the agri-food system. Food Pol 30(3):241–253CrossRefGoogle Scholar
  26. Hospido A, Milà i, Canals L, McLaren S, Truninger M, Edwards-Jones G, Clift R (2009) The role of seasonality in lettuce consumption: a case study of environmental and social aspects. Int J Life Cycle Assess 14(5):381–391CrossRefGoogle Scholar
  27. Huijbregts MAJ (1998) Application of uncertainty and variability in LCA. Int J Life Cycle Assess 3(5):273–280Google Scholar
  28. Iriarte A, Almeida MG, Villalobos P (2014) Carbon footprint of premium quality export bananas: case study in Ecuador, the world's largest exporter. Sci Total Environ 472:1082–1088CrossRefGoogle Scholar
  29. Jones AK, Jones DL, Cross P (2014) The carbon footprint of lamb: sources of variation and opportunities for mitigation. Agric Syst 123:97–107CrossRefGoogle Scholar
  30. Josling T (2002) The impact of food industry globalization on agricultural trade policy. In: Agricultural globalization trade and the environment. Springer, Boston, pp 309–328CrossRefGoogle Scholar
  31. Keyes S, Tyedmers P, Beazley K (2015) Evaluating the environmental impacts of conventional and organic apple production in Nova Scotia, Canada, through life cycle assessment. J Clean Prod 104:40–51CrossRefGoogle Scholar
  32. Knudsen MT, de Almeida G, Langer V, de Abreu LS, Halberg N (2011) Environmental assessment of organic juice imported to Denmark: a case study on oranges (Citrus sinensis) from Brazil. Org Agric 1:167–185CrossRefGoogle Scholar
  33. Lacirignola M, Blanc P, Girard R, Perez-Lopez P, Blanc I (2017) LCA of emerging technologies: addressing high uncertainty on inputs’ variability when performing global sensitivity analysis. Sci Total Environ 578:268–280CrossRefGoogle Scholar
  34. Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46(7):4100–4108CrossRefGoogle Scholar
  35. Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol 49(4):764–766CrossRefGoogle Scholar
  36. LineRail (2014) Boletín Fundación Valencia Port. Julio –Diciembre 2013. Available at: Accessed 01 April 2018
  37. Lo Giudice A, Mbohwa C, Clasadonte MT, Incrao C (2013) Environmental assessment of the citrus fruit production in Sicily using LCA. Ital J Food Sci 25(2):202Google Scholar
  38. De Luca AI, Falcone G, Stillitano T, Strano A, Gulisano G (2014) Sustainability assessment of quality-oriented citrus growing systems in Mediterranean area. Calitatea 15(141):103Google Scholar
  39. Luè A, Bresciani C, Colorni A, Lia F, Maras V, Radmilović Z, Anoyrkati E (2016) Future priorities for a climate-friendly transport: a European strategic research agenda toward 2030. Int J Sust Transpor 10(3):236–246CrossRefGoogle Scholar
  40. MAPAMA (2017) Ministerio de Agricultura, Pesca, Alimentación y Medioambiente de España. Agricultura Ecológica. Estadisticas 2015. Available at: 2015 connipoymetadatos_tcm7-435957.pdf. Accessed 20 January 2018
  41. Martínez-Jávega JM, Salvador A, Navarro P (2007) Adecuación del tratamiento de desverdización para minimizar alteraciones fisiológicas durante la comercialización de mandarinas. In Congreso Iberoamericano de Tecnología Postcosecha y Agroexportaciones Centro de Tecnología Postcosecha Instituto Valenciano de Investigaciones Agrarias Apartado Oficial (Vol. 46113)Google Scholar
  42. Meneses M, Pasqualino J, Castells F (2012) Environmental assessment of the milk life cycle: the effect of packaging selection and the variability of milk production data. J Environ Manag 107:76–83CrossRefGoogle Scholar
  43. Meneses M, Torres CM, Castells F (2016) Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain. Sci Total Environ 562:571–579CrossRefGoogle Scholar
  44. Nicolo BF, De Luca AI, Stillitano T, Iofrida N, Falcone G, Gulisano G (2017) Environmental and economic sustainability assessment of navel oranges from the cultivation to the packinghouse according to environmental product declarations system. Calitatea 18(158):108Google Scholar
  45. Notarnicola B, Sala S, Anton A, McLaren SJ, Saouter E, Sonesson U (2017) The role of life cycle assessment in supporting sustainable Agri-food systems: a review of the challenges. J Clean Prod 140:399–409CrossRefGoogle Scholar
  46. Pardo J, Soler G, Buj A (2016) Calendario de recolección de cítricos cultivados en España. Instituto Valenciano de Investigaciones Agrarias Available at: wwwiviagvaes/variedades/ Accesed 12 April 2016
  47. Pérez Neira DP, Soler Montiel MS, Delgado Cabeza MD, Reigada A (2018) Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Sci Total Environ 628:1627–1636CrossRefGoogle Scholar
  48. Pergola M, D'Amico M, Celano G, Palese A, Scuderi A, Di Vita G et al (2013) Sustainability evaluation of Sicily's lemon and orange production: an energy, economic and environmental analysis. J Environ Manag 128:674–682CrossRefGoogle Scholar
  49. Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360(6392):987–992CrossRefGoogle Scholar
  50. Renouf MA, Wegener MK, Pagan RJ (2010) Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. Int J Life Cycle Assess 15(9):927–937CrossRefGoogle Scholar
  51. Ribal J, Ramírez-Sanz C, Estruch V, Clemente G, Sanjuán N (2017) Organic versus conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana (Spain). Int J Life Cycle Assess 22(4):571–586CrossRefGoogle Scholar
  52. Roibás L, Loiseau E, Hospido A (2017) Determination of the carbon footprint of all Galician production and consumption activities: lessons learnt and guidelines for policymakers. J Environ Manag 198:289–299CrossRefGoogle Scholar
  53. Röös E, Sundberg C, Hansson PA (2010) Uncertainties in the carbon footprint of food products: a case study on table potatoes. Int J Life Cycle Assess 15(5):478–488CrossRefGoogle Scholar
  54. Röös E, Sundberg C, Hansson PA (2011) Uncertainties in the carbon footprint of refined wheat products: a case study on Swedish pasta. Int J Life Cycle Assess 16(4):338–350CrossRefGoogle Scholar
  55. Sanjuan N, Ubeda L, Clemente G, Mulet A, Girona F (2005) LCA of integrated orange production in the Comunidad Valenciana (Spain). Int J Agric Res Gov Ecol (2):163–177Google Scholar
  56. SI, PAS 2050–1:2012 (2012) Assessment of life cycle greenhouse gas emissions from horticultural products—supplementary requirements for the cradle to gate stages of GHG assessments of horticultural products undertaken in accordance with PAS 2050. British Standards Institution, LondonGoogle Scholar
  57. da Silva VP, van der Werf HM, Spies A, Soares SR (2010) Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J Environ Manag 91(9):1831–1839CrossRefGoogle Scholar
  58.  Steinmann ZJ, Hauck M, Karuppiah R, Laurenzi IJ, Huijbregts MA (2014) A methodology for separating uncertainty and variability in the life cycle greenhouse gas emissions of coal-fueled power generation in the USA. Int J Life Cycle Assess 19(5):1146–1155Google Scholar
  59. Van der Krogt D, Nilsson J, Host V (2007) The impact of cooperatives’ risk aversion and equity capital constraints on their inter-firm consolidation and collaboration strategies—with an empirical study of the European dairy industry. Agribusiness 23(4):453–472CrossRefGoogle Scholar
  60. Vinyes E, Asin L, Alegre S, Muñoz P, Boschmonart J, Gasol CM (2017) Life cycle assessment of apple and peach production, distribution and consumption in Mediterranean fruit sector. J Clean Prod 149:313–320CrossRefGoogle Scholar
  61. Webb J, Williams AG, Hope E, Evans D, Moorhouse E (2013) Do foods imported into the UK have a greater environmental impact than the same foods produced within the UK? Int J Life Cycle Assess 18(7):1325–1343CrossRefGoogle Scholar
  62. Weber CL, Matthews HS (2008) Food-miles and the relative climate impacts of food choices in the United States. Environ Sci Technol 42(10):3508–3513CrossRefGoogle Scholar
  63. Weidema BP, Thrane M, Christensen P, Schmidt J, Løkke S (2008) Carbon footprint. A catalyst for life cycle assessment? J Ind Ecol 12(1):3–6CrossRefGoogle Scholar
  64. Williams AG, Audsley E, Sandars DL (2010) Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. Int J Life Cycle Assess 15(8):855–868CrossRefGoogle Scholar
  65. Zaragozà JL (2016) Nueva ruta desde Valencia al norte de Europa para impulsar la exportación citrícola. Levante, 12/05/2016. Available at: Accessed 1 April 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament d’Economia i Ciències Socials, Edifici 3PUniversitat Politècnica de ValènciaValènciaSpain
  2. 2.Grup ASPA. Departament de Tecnologia d’Aliments, Edifici 3FUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations