Advertisement

GeroScience

pp 1–15 | Cite as

Ellagic acid prolongs the lifespan of Drosophila melanogaster

  • Priyanka Kharat
  • Priyanka Sarkar
  • S. Mouliganesh
  • Vaibhav Tiwary
  • V.B. Ramya Priya
  • N. Yamini Sree
  • H. Vinu Annapoorna
  • Diganta K. Saikia
  • Kaustav Mahanta
  • Kavitha ThirumuruganEmail author
Original Article

Abstract

Wild-type Canton-S flies of Drosophila melanogaster were treated with ellagic acid at 100 μM and 200 μM concentrations. Longevity assay showed male flies fed with 200 μM ellagic acid displayed longer mean lifespan and maximum lifespan than control flies. Female flies fed with 200 μM ellagic acid laid less number of eggs than control. The eclosion time was less in female flies fed with 200 μM ellagic acid. Ellagic acid fed female flies performed better than male flies and control flies for heat shock tolerance and starvation stress. Male flies treated with 100 μM ellagic acid recovered faster from cold shock compared with control flies. Male and female flies treated with ellagic acid displayed increased survival following exposure to 5% hydrogen peroxide. Gene expression studies displayed upregulated expressions of CAT, dFOXO, ATG1, and SOD2 in ellagic acid–treated male flies, and upregulated expressions of dFOXO, CAT, and SOD2 in ellagic acid–treated female flies. Results from these studies show the pro-longevity effect of ellagic acid on Drosophila melanogaster.

Keywords

Ellagic acid Drosophila melanogaster Longevity Stress Gene expression 

Notes

Acknowledgments

We thank Dr. N.B. Ramachandra at Mysore University, National Drosophila Stock Centre, India, for providing the wild-type Canton-S fly strain. We are thankful to Vellore Institute of Technology for the seed grant and facilities provided.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11357_2019_135_MOESM1_ESM.docx (630 kb)
ESM 1 (DOCX 630 kb)
11357_2019_135_MOESM2_ESM.docx (25 kb)
ESM 2 (DOCX 25.1 kb)

References

  1. Austad SN, Fischer KE (2016) Sex differences in lifespan. Cell Metab.  https://doi.org/10.1016/j.cmet.2016.05.019 CrossRefGoogle Scholar
  2. Avanesian A, Khodayari B, Felgner JS, Jafari M (2010) Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster. Biogerontology.  https://doi.org/10.1007/s10522-009-9227-1 CrossRefGoogle Scholar
  3. Bae JY, Choi JS, Kang SW, Lee YJ, Park J, Kang YH (2010) Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Exp Dermatol.  https://doi.org/10.1111/j.1600-0625.2009.01044.x CrossRefGoogle Scholar
  4. Baeeri M, Momtaz S, Navaei-Nigjeh M, Niaz K, Rahimifard M, Ghasemi-Niri SF, Sanadgol N, Hodjat M, Sharifzadeh M, Abdollahi M (2017) Molecular evidence on the protective effect of ellagic acid on phosalone-induced senescence in rat embryonic fibroblast cells. Food Chem Toxicol.  https://doi.org/10.1016/j.fct.2016.12.008 CrossRefGoogle Scholar
  5. Baeeri M, Mohammadi-Nejad S, Rahimifard M, Navaei-Nigjeh M, Moeini-Nodeh S, Khorasani R, Abdollahi M (2018) Molecular and biochemical evidence on the protective role of ellagic acid and silybin against oxidative stress-induced cellular aging. Mol Cell Biochem.  https://doi.org/10.1007/s11010-017-3172-0 CrossRefGoogle Scholar
  6. Balasubramani SP, Mohan J, Chatterjee A, Patnaik E, Kukkupuni SK, Nongthomba U, Venkatasubramanian P (2014) Pomegranate juice enhances healthy lifespan in Drosophila melanogaster: an exploratory study. Front Public Health.  https://doi.org/10.3389/fpubh.2014.00245
  7. Bass TM, Grandison RC, Wong R, Martinez P, Partridge L, Piper MDW (2007a) Optimization of dietary restriction protocols in Drosophila. J Gerontol Ser A Biol Sci Med Sci.  https://doi.org/10.1093/gerona/62.10.1071 CrossRefGoogle Scholar
  8. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007b) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev.  https://doi.org/10.1016/j.mad.2007.07.007 CrossRefGoogle Scholar
  9. Chattopadhyay D, Thirumurugan K (2018) Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev.  https://doi.org/10.1016/j.mad.2018.03.002 CrossRefGoogle Scholar
  10. Chattopadhyay D, James J, Roy D, Sen S, Chatterjee R, Thirumurugan K (2015) Effect of semolina-jaggery diet on survival and development of drosophila melanogaster. Fly (Austin) 9.  https://doi.org/10.1080/19336934.2015.1079361 CrossRefGoogle Scholar
  11. Chattopadhyay D, Sen S, Chatterjee R, Roy D, James J, Thirumurugan K (2016) Context- and dose-dependent modulatory effects of naringenin on survival and development of Drosophila melanogaster. Biogerontology 17.  https://doi.org/10.1007/s10522-015-9624-6 CrossRefGoogle Scholar
  12. Chattopadhyay D, Chitnis A, Talekar A, Mulay P, Makkar M, James J, Thirumurugan K (2017) Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster. Biogerontology 18.  https://doi.org/10.1007/s10522-017-9700-1 CrossRefGoogle Scholar
  13. Corbett S, Daniel J, Drayton R, Field M, Steinhardt R, Garrett N (2010) Evaluation of the anti-inflammatory effects of ellagic acid. J Perianesthesia Nurs.  https://doi.org/10.1016/j.jopan.2010.05.011 CrossRefGoogle Scholar
  14. Feng Y, Yang SG, Du XT, Zhang X, Sun XX, Zhao M, Sun GY, Liu RT (2009) Ellagic acid promotes Aβ42 fibrillization and inhibits Aβ42-induced neurotoxicity. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2009.10.130 CrossRefGoogle Scholar
  15. Giannakou ME, Goss M, Jünger MA, Hafen E, Leevers SJ, Partridge L (2004) Long-lived Drosophila with over-expressed dFOXO in adult fat body. Science (80).  https://doi.org/10.1126/science.1098219 CrossRefGoogle Scholar
  16. Gruntenko NE, Karpova EK, Burdina EV, Adonyeva NV, Andreenkova OV, Alekseev AA, Rauschenbach IY (2016) Probable mechanism of sexual dimorphism in insulin control of Drosophila heat stress resistance. Physiol Entomol.  https://doi.org/10.1111/phen.12125 CrossRefGoogle Scholar
  17. Han DH, Lee MJ, Kim JH (2006) Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer ResGoogle Scholar
  18. Han SK, Lee D, Lee H, Kim D, Son HG, Yang J-S, Lee S-JV, Kim S (2016) OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget.  https://doi.org/10.18632/oncotarget.11269
  19. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol.  https://doi.org/10.1016/j.cub.2004.03.059 CrossRefGoogle Scholar
  20. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Integr Comp Physiol.  https://doi.org/10.1152/ajpregu.00327.2006 CrossRefGoogle Scholar
  21. Lashmanova E, Proshkina E, Zhikrivetskaya S, Shevchenko O, Marusich E, Leonov S, Melerzanov A, Zhavoronkov A, Moskalev A (2015) Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res.  https://doi.org/10.1016/j.phrs.2015.08.009 CrossRefGoogle Scholar
  22. Lashmanova E, Zemskaya N, Proshkina E, Kudryavtseva A, Volosnikova M, Marusich E, Leonov S, Zhavoronkov A, Moskalev A (2017) The evaluation of geroprotective effects of selected flavonoids in Drosophila melanogaster and Caenorhabditis elegans. Front Pharmacol 8.  https://doi.org/10.3389/fphar.2017.00884
  23. Lee S-H, An H-S, Jung YW, Lee E-J, Lee H-Y, Choi E-S, An SW, Son H, Lee S-J, Kim J-B, Min K-J (2014) Korean mistletoe (Viscum album coloratum) extract extends the lifespan of nematodes and fruit flies. Biogerontology 15:153–164.  https://doi.org/10.1007/s10522-013-9487-7 CrossRefPubMedGoogle Scholar
  24. Li X, Zhang Z, Zhang X, Cheng J, Liu D, Yan Y, Wang H (2019) Transcriptomic analysis of the life-extending effect exerted by black rice anthocyanin extract in D. melanogaster through regulation of aging pathways. Exp Gerontol.  https://doi.org/10.1016/j.exger.2019.01.015 CrossRefGoogle Scholar
  25. Linford NJ, Bilgir C, Ro J, Pletcher SD (2013) Measurement of lifespan in Drosophila melanogaster. J Vis Exp.  https://doi.org/10.3791/50068
  26. Ma S, Avanesov AS, Porter E, Lee BC, Mariotti M, Zemskaya N, Guigo R, Moskalev AA, Gladyshev VN (2018) Comparative transcriptomics across 14 Drosophila species reveals signatures of longevity. Aging Cell.  https://doi.org/10.1111/acel.12740 CrossRefGoogle Scholar
  27. Macedo GE, Gomes KK, Rodrigues NR, Martins IK, Wallau GDL, Carvalho NR, Cruz LCD, Costa Silva DGD, Boligon AA, Franco JL, Posser T (2017) Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster. Comp Biochem Physiol Part - C Toxicol Pharmacol.  https://doi.org/10.1016/j.cbpc.2017.05.004 Google Scholar
  28. Muthenna P, Akileshwari C, Reddy GB (2011) Ellagic acid, a new antiglycating agent: its inhibition of N ϵ -(carboxymethyl)lysine. Biochem J.  https://doi.org/10.1042/bj20110846 CrossRefGoogle Scholar
  29. Peng C, Chan HYE, Huang Y, Yu H, Chen ZY (2011) Apple polyphenols extend the mean lifespan of Drosophila melanogaster. J Agric Food Chem.  https://doi.org/10.1021/jf1046267 CrossRefGoogle Scholar
  30. Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HYE, Huang Y, Yu H, Chen Z-Y (2012) Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 47:170–178.  https://doi.org/10.1016/j.exger.2011.12.001 CrossRefPubMedGoogle Scholar
  31. Pletcher SD, Khazaeli AA, Curtsinger JW (2000) Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. J Gerontol Ser A Biol Sci Med Sci.  https://doi.org/10.1093/gerona/55.8.B381 CrossRefGoogle Scholar
  32. Pomatto LCD, Davies KJA (2017) The role of declining adaptive homeostasis in ageing. J Physiol.  https://doi.org/10.1113/JP275072 CrossRefGoogle Scholar
  33. Pomatto LCD, Davies KJA (2018) Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med.  https://doi.org/10.1016/j.freeradbiomed.2018.06.016 CrossRefGoogle Scholar
  34. Qiu Z, Zhou B, Jin L, Yu H, Liu L, Liu Y, Qin C, Xie S, Zhu F (2013) In vitro antioxidant and antiproliferative effects of ellagic acid and its colonic metabolite, urolithins, on human bladder cancer T24 cells. Food Chem Toxicol.  https://doi.org/10.1016/j.fct.2013.06.025 CrossRefGoogle Scholar
  35. Rahimi VB, Askari VR, Mousavi SH (2018) Ellagic acid reveals promising anti-aging effects against D-galactose-induced aging on human neuroblastoma cell line, SH-SY5Y: A mechanistic study. Biomed Pharmacother.  https://doi.org/10.1016/j.biopha.2018.10.024 CrossRefGoogle Scholar
  36. Rattan SIS (2008) Hormesis in aging. Ageing Res Rev.  https://doi.org/10.1016/j.arr.2007.03.002 CrossRefGoogle Scholar
  37. Rogerio AP, Fontanari C, Borducchi É, Keller AC, Russo M, Soares EG, Albuquerque DA, Faccioli LH (2008) Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. Eur J Pharmacol.  https://doi.org/10.1016/j.ejphar.2007.10.034 CrossRefGoogle Scholar
  38. Saha P, Yeoh BS, Singh R, Chandrasekar B, Vemula PK, Haribabu B, Vijay-Kumar M, Jala VR (2016) Gut microbiota conversion of dietary ellagic acid into bioactive phytoceutical urolithin a inhibits heme peroxidases. PLoS One.  https://doi.org/10.1371/journal.pone.0156811 CrossRefGoogle Scholar
  39. Sanadgol N, Golab F, Tashakkor Z, Taki N, Kouchi SM, Mostafaie A, Mehdizadeh M, Abdollahi M, Taghizadeh G, Sharifzadeh M (2017) Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. Pharm Biol.  https://doi.org/10.1080/13880209.2017.1319867 CrossRefGoogle Scholar
  40. Sepand MR, Ghahremani MH, Razavi-Azarkhiavi K, Aghsami M, Rajabi J, Keshavarz-Bahaghighat H, Soodi M (2016) Ellagic acid confers protection against gentamicin-induced oxidative damage, mitochondrial dysfunction and apoptosis-related nephrotoxicity. J Pharm Pharmacol.  https://doi.org/10.1111/jphp.12589 CrossRefGoogle Scholar
  41. Staats S, Lüersen K, Wagner AE, Rimbach G (2018a) Drosophila melanogaster as a versatile model organism in food and nutrition research. J Agric Food Chem.  https://doi.org/10.1021/acs.jafc.7b05900 CrossRefGoogle Scholar
  42. Staats S, Wagner AE, Kowalewski B, Rieck FT, Soukup ST, Kulling SE, Rimbach G (2018b) Dietary resveratrol does not affect life span, body composition, stress response, and longevity-related gene expression in Drosophila melanogaster. Int J Mol Sci.  https://doi.org/10.3390/ijms19010223 CrossRefGoogle Scholar
  43. Tower J, Arbeitman M (2009) The genetics of gender and life span. J Biol.  https://doi.org/10.1186/jbiol141 CrossRefGoogle Scholar
  44. Uzar E, Alp H, Cevik MU, Firat U, Evliyaoglu O, Tufek A, Altun Y (2012) Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats. Neurol Sci.  https://doi.org/10.1007/s10072-011-0775-1 CrossRefGoogle Scholar
  45. Wang C, Wheeler CT, Alberico T, Sun X, Seeberger J, Laslo M, Spangler E, Kern B, De Cabo R, Zou S (2013) The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. Age (Omaha).  https://doi.org/10.1007/s11357-011-9332-3 CrossRefGoogle Scholar
  46. Wang C, Yolitz J, Alberico T, Laslo M, Sun Y, Wheeler CT, Sun X, Zou S (2014) Cranberry interacts with dietary macronutrients to promote healthy aging in drosophila. J Gerontol Ser A Biol Sci Med Sci.  https://doi.org/10.1093/gerona/glt161 CrossRefGoogle Scholar
  47. Wang L, Li YM, Lei L, Liu Y, Wang X, Ma KY, Chen Z-Y (2015) Cranberry anthocyanin extract prolongs lifespan of fruit flies. Exp Gerontol 69:189–195.  https://doi.org/10.1016/j.exger.2015.06.021 CrossRefPubMedGoogle Scholar
  48. Yan L, Yin P, Ma C, Liu Y (2014) Method development and validation for pharmacokinetic and tissue distributions of ellagic acid using ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Molecules.  https://doi.org/10.3390/molecules191118923 CrossRefGoogle Scholar
  49. Zhang Z, Han S, Wang H, Wang T (2014) Lutein extends the lifespan of Drosophila melanogaster. Arch Gerontol Geriatr 58:153–159.  https://doi.org/10.1016/j.archger.2013.07.007 CrossRefPubMedGoogle Scholar
  50. Zhou Y, Xue L, Gao L, Qin X, Du G (2018) Ginger extract extends the lifespan of Drosophila melanogaster through antioxidation and ameliorating metabolic dysfunction. J Funct Foods 49:295–305.  https://doi.org/10.1016/j.jff.2018.08.040 CrossRefGoogle Scholar

Copyright information

© American Aging Association 2019

Authors and Affiliations

  • Priyanka Kharat
    • 1
  • Priyanka Sarkar
    • 1
  • S. Mouliganesh
    • 1
  • Vaibhav Tiwary
    • 1
  • V.B. Ramya Priya
    • 1
  • N. Yamini Sree
    • 1
  • H. Vinu Annapoorna
    • 1
  • Diganta K. Saikia
    • 1
  • Kaustav Mahanta
    • 1
  • Kavitha Thirumurugan
    • 1
    Email author
  1. 1.206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations