Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association


This study examined how soil mercury contamination affected the structure and functionality of rhizobacteria communities from Aeschynomene fluminensis and Polygonum acuminatum and how rhizobacteria mediate metal bioremediation. The strains were isolated using culture-dependent methods, identified through 16S rDNA gene sequencing, and characterized with respect to their functional traits related to plant growth promotion and resistance to metals and antibiotics. The bioremediation capacity of the rhizobacteria was determined in greenhouse using corn plants. The isolated bacteria belonged to the phyla Actinobacteria, Deinococcus-Thermus, Firmicutes, and Proteobacteria, with great abundance of the species Microbacterium trichothecenolyticum. The rhizobacteria abundance, richness, and diversity were greater in mercury-contaminated soils. Bacteria isolated from contaminated environments had higher minimum inhibitory concentration values, presented plasmids and the merA gene, and were multi-resistant to metals and antibiotics. Enterobacter sp._C35 and M. trichothecenolyticum_C34 significantly improved (Dunnett’s test, p < 0.05) corn plant growth in mercury-contaminated soil. These bacteria helped to reduce up to 87% of the mercury content in the soil, and increased the mercury bioaccumulation factor by up to 94%. Mercury bioremediation mitigated toxicity of the contaminated substrate. Enterobacter sp._C35, Bacillus megaterium_C28, and Bacillus mycoides_C1 stimulated corn plant growth and could be added to biofertilizers produced in research and related industries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889. https://doi.org/10.1016/j.soilbio.2006.04.045

  2. Abu-Dieyeh MH, Alduroobi HM, Al-Ghouti MA (2019) Potential of mercury-tolerant bacteria for bio-uptake of mercury leached from discarded fluorescent lamps. J Environ Manag 237:217–227. https://doi.org/10.1016/j.jenvman.2019.02.066

  3. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. https://doi.org/10.1007/s00248-009-9531-y

  4. Afzal I, Iqrar I, Shinwari ZK, Yasmin A (2017) Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul 81:399–408. https://doi.org/10.1007/s10725-016-0216-5

  5. Ait Ali N, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111. https://doi.org/10.1023/A:1014995321560

  6. Ali N, Al-Awadhi H, Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Radwan SS (2015) Bioremediation of atmospheric hydrocarbons via bacteria naturally associated with leaves of higher plants. Int J Phytoremediation 17:1160–1170. https://doi.org/10.1080/15226514.2015.1045125

  7. Almoneafy AA, Kakar KU, Nawaz Z, Li B, Chun-lan Y, Xie GL (2014) Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis 63:59–70. https://doi.org/10.1007/s13199-014-0288-9

  8. Aniszewski E, Peixoto RS, Mota FF, Leite SGF, Rosado AS (2010) Bioemulsifier production by Microbacterium sp. strains isolated from mangrove and their application to remove cadmium and zinc from hazardous industrial residue. Braz J Microbiol 41:235–245. https://doi.org/10.1590/S1517-83822010000100033

  9. Audet P, Charest C (2007) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237. https://doi.org/10.1016/j.envpol.2006.08.011

  10. Azaizeh H, Castro PM, Kidd P (2011) Biodegradation of organic xenobiotic pollutants in the rhizosphere. In: Schröder P, Collins C (eds) Organic xenobiotics and plants, vol 191. Springer, Dordrecht, p 215. https://doi.org/10.1007/978-90-481-9852-8_9

  11. Bafana A, Krishnamurthi K, Patil M, Chakrabarti T (2010) Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. J Hazard Mater 177:481–486. https://doi.org/10.1016/j.jhazmat.2009.12.058

  12. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384. https://doi.org/10.1016/S0168-6445(03)00046-9

  13. Barros D, Pradhan A, Mendes VM, Manadas B, Santos PM, Pascoal C, Cassio F (2019) Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. Environmental Science Nano. https://doi.org/10.1039/c8en01067f

  14. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496. https://doi.org/10.1016/S0305-4179(78)80006-0

  15. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001

  16. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

  17. Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Peplies J (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. https://doi.org/10.1038/nature11336

  18. Carrasco-Gil S, Álvarez-Fernández A, Sobrino-Plata J, Millan R, Carpena-Ruiz RO, Leduc DL, Hernandez LE (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791. https://doi.org/10.1111/j.1365-3040.2011.02281.x

  19. Carrim AJI, Barbosa EC, Vieira JDG (2006) Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-do-campo). Braz Arch Biol Technol 49:353–359. https://doi.org/10.1590/S1516-89132006000400001

  20. Chang J, Yang Q, Dong J, Ji B, Si G, He F, Chen J (2019) Reduction in Hg phytoavailability in soil using Hg-volatilizing bacteria and biochar and the response of the native bacterial community. Microb Biotechnol 12:1014–1023. https://doi.org/10.1111/1751-7915.13457

  21. Chen J, Dong J, Shen S, Mei J, Chang J (2019a) Isolation of the Hg (II)-volatilizing Bacillus sp. strain DC-B2 and its potential to remediate Hg (II)-contaminated soils. J Chem Technol Biotechnol 94:1433–1440. https://doi.org/10.1002/jctb.5905

  22. Chen X, Zhao Y, Zeng C, Li Y, Zhu L, Wu J, Chen J, Wei Z (2019b) Assessment contributions of physicochemical properties and bacterial community to mitigate the bioavailability of heavy metals during composting based on structural equation models. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121657

  23. Chien M, Nakahata R, Ono T, Miyauch K, Endo G (2012) Mercury removal and recovery by immobilized Bacillus megaterium MB1. Front Environ Sci Eng 6:192–197. https://doi.org/10.1007/s11705-012-1284-3

  24. Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512. https://doi.org/10.1146/annurev-arplant-043015-112301

  25. Connell JH (1979) Intermediate-disturbance hypothesis. Science 204:1345–1345. doi: https://doi.org/10.1126/science.204.4399.1345

  26. Correia J, Cesar R, Marsico E, Correia J, Cesar R, Marsico E, Diniz GTN, Zorro MC, Zl C (2014) Mercury contamination in alligators (Melanosuchus niger) from Mamirauá Reservoir (Brazilian Amazon) and human health risk assessment. Environ Sci Pollut Res 21:13522–13527. https://doi.org/10.1007/s11356-014-3282-0

  27. Dahshan H, Abd-Elall AMM, Megahed AM (2013) Trace metal levels in water, fish, and sediment from River Nile, Egypt: potential health risks assessment. J Toxicol Environ Heal Part A 76:1183–1187. https://doi.org/10.1080/15287394.2013.848421

  28. Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res Int 21:2642–2653. https://doi.org/10.1007/s11356-013-2206-8

  29. Development Core Team R (2016) R: A language and environment for statistical computing. R Found Stat Comput Vienna Austria. https://doi.org/10.1038/sj.hdy.6800737

  30. Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230. https://doi.org/10.1128/AEM.69.6.3223-3230.2003

  31. Fidalgo C, Henriques I, Rocha J, Tacão M, Alves A (2016) Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides: phylogenetic diversity, functional characterization, and influence of metal (loid) contamination. Environ Sci Pollut Res Int 23:10200–10214. https://doi.org/10.1007/s11356-016-6208-1

  32. Gai K, Hoelen TP, Hsu-Kim H, Lowry GV (2016) Mobility of four common mercury species in model and natural unsaturated soils. Environ Sci Technol 50:3342–3351. https://doi.org/10.1021/acs.est.5b04247

  33. Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, In, pp 7–14. https://doi.org/10.1007/s11104-007-9514-z

  34. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agr Expt Sta Circ 347:32 https://doi.org/citeulike-article-id:9455435

  35. Holmes DE, Giloteaux L, Chaurasia AK, Williams KH, Luef B, Wilkins MJ, Lovley DR (2015) Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. ISME J 9:333–346. https://doi.org/10.1038/ismej.2014.128

  36. Katznelson H, Bose B (1959) Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots, rhizosphere, and non-rhizosphere soil. Can J Microbiol 5:79–85. https://doi.org/10.1139/m59-010

  37. Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, Watt M (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One 11:e0164533. https://doi.org/10.1371/journal.pone.0164533

  38. Knapp CW, Callan AC, Aitken B, Shearn R, Koenders A, Hinwood A (2017) Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environ Sci Pollut Res 24:2484–2494. https://doi.org/10.1007/s11356-016-7997-y

  39. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44. https://doi.org/10.1007/s11104-007-9517-9

  40. Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045. https://doi.org/10.1016/j.ecoenv.2017.09.049

  41. Learman DR, Ahmad Z, Brookshier A, Henson MW, Hewitt V, Lis A, Wynne S (2019) Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics. PeerJ 6:e6258. https://doi.org/10.7717/peerj.6258

  42. Liu Z, Wu Y, Lei C, Liu P, Gao M (2012) Chromate reduction by a chromate-resistant bacterium, Microbacterium sp. World J Microbiol Biotechnol 28:1585–1592. https://doi.org/10.1007/s11274-011-0962-5

  43. Liu YR, Wang JJ, Zheng YM, Zhang LM, He JZ (2014) Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol 68:575–583. https://doi.org/10.1007/s00248-014-0430-5

  44. Liu Z, Wang LA, Xu J, Ding S, Feng X, Xiao H (2017) Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol Eng 106:273–278. https://doi.org/10.1016/j.ecoleng.2017.05.051

  45. Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918. https://doi.org/10.3389/fpls.2016.00918

  46. Mahbub KR, Subashchandrabose SR, Krishnan K, Naidu R, Megharaj M (2017) Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values. Appl Microbiol Biotechnol 101:2163–2175. https://doi.org/10.1007/s00253-016-7965-y

  47. Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res 77:73–78. https://doi.org/10.1006/enrs.1998.3828

  48. Manzoor M, Gul I, Ahmed I, Zeeshan M, Hashmi I, Amin BAZ, Arshad M (2019) Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Chemosphere 227:561–569. https://doi.org/10.1016/j.chemosphere.2019.04.093

  49. Martín-Doimeadios RR, Nevado JB, Bernardo FG, Moreno MJ, Arrifano GPF, Herculano AM, Crespo-López ME (2014) Comparative study of mercury speciation in commercial fishes of the Brazilian Amazon. Environ Sci Pollut Res 21:7466–7479. https://doi.org/10.1007/s11356-014-2680-7

  50. May Junior JA, Quigley H, Hoogesteijn R, Tortato FR, Devlin A, Carvalho Júnior RM, Paula RC (2017) Mercury content in the fur of jaguars (Panthera onca) from two areas under different levels of gold mining impact in the Brazilian Pantanal. An Acad Bras Cienc 90:2129–2139. https://doi.org/10.1590/0001-3765201720170190

  51. Mello IS, Pietro-Souza W, Barros BM, da Silva GF, Campos ML, Soares MA (2019) Endophytic bacteria mitigate mercury toxicity to host plants. Symbiosis. 79:251–262. https://doi.org/10.1007/s13199-019-00644-0

  52. Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF (2013) Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS One 8:e56018. https://doi.org/10.1371/journal.pone.0056018

  53. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005

  54. Nakagawa T, Hanada S, Maruyama A, Marumo K, Urabe T, Fukui M (2002) Distribution and diversity of thermophilic sulfate-reducing bacteria within a Cu-Pb-Zn mine (Toyoha, Japan). FEMS Microbiol Ecol 41:199–209. https://doi.org/10.1016/S0168-6496(02)00293-3

  55. Oestreicher JS, Lucotte M, Moingt M, Bélanger É, Rozon C, Davidson R, Romaña CA (2017) Environmental and anthropogenic factors influencing mercury dynamics during the past century in floodplain lakes of the Tapajós River, Brazilian Amazon. Arch Environ Contam Toxicol 72:11–30. https://doi.org/10.1007/s00244-016-0325-1

  56. Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262. https://doi.org/10.1111/j.1574-6976.1997.tb00300.x

  57. Pestana IA, Bastos WR, Almeida MG, de Carvalho DP, Rezende CE, Souza CMM (2016) Spatial-temporal dynamics and sources of total Hg in a hydroelectric reservoir in the Western Amazon, Brazil. Environ Sci Pollut Res 23:9640–9648. https://doi.org/10.1007/s11356-016-6185-4

  58. Pétriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J (2017) Metabolite profiling of non-sterile rhizosphere soil. Plant J 92:147–162. https://doi.org/10.1111/tpj.13639

  59. Pieterse CMJ, de Jonge R, Berendsen RL (2016) The soil-borne supremacy. Trends Plant Sci 21:171–173. https://doi.org/10.1016/j.tplants.2016.01.018

  60. Pietro-Souza W, de Campos Pereira F, Mello IS, FFF S, Terezo AJ, da Cunha CN, Soares MA (2019) Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240:1–12. https://doi.org/10.1016/j.chemosphere.2019.124874

  61. Pietro-Souza W, Mello IS, Vendruscullo SJ, Da Silva GF, Da Cunha CN, White JF, Soares MA (2017) Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination. PLoS One 12:1–24. https://doi.org/10.1371/journal.pone.0182017

  62. Pinter IF, Salomon MV, Berli F, Bottini R, Piccoli P (2017) Characterization of the As(III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Appl Soil Ecol 109:60–68. https://doi.org/10.1016/j.apsoil.2016.10.003

  63. Płociniczak T, Chodór M, Pacwa-Płociniczak M, Piotrowska-Seget Z (2019) Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants. Chemosphere 219:250–260. https://doi.org/10.1016/j.chemosphere.2018.12.018

  64. Pushkar B, Sevak P, Sounderajan S (2019) Assessment of the bioremediation efficacy of the mercury resistant bacterium isolated from the Mithi River. Water Sci Tech-W Sup 19:191–199. https://doi.org/10.2166/ws.2018.064

  65. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. https://doi.org/10.1016/j.tibtech.2009.12.002

  66. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

  67. Rizzini Ansari N, Fernandez MA, Brito JL, Vidal LG, de Andrade Costa ES, Malm O (2016) Assessing mercury contamination in a tropical coastal system using the mussel Perna perna and the sea anemone Bunodosoma caissarum. Environ Monit Assess 188:679. https://doi.org/10.1007/s10661-016-5683-7

  68. Sauvain L, Bueche M, Junier T, Masson M, Wunderlin T, Kohler-Milleret R, Junier P (2014) Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria. Aquat Sci 76:33–46. https://doi.org/10.1007/s00027-013-0313-8

  69. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

  70. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194. https://doi.org/10.1016/j.soilbio.2013.01.012

  71. Shao J, Xu Z, Zhang N, Shen Q, Zhang R (2015) Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils 51:321–330. https://doi.org/10.1007/s00374-014-0978-8

  72. Shinwari KI, Shah A, Afridi MI, Zeeshan M, Hussain H, Hussain J, Ahmad O, Jamil M (2015) Application of plant growth promoting rhizobacteria in bioremediation of heavy metal polluted soil. AJMS 3:179 http://www.ajms.co.in/sites/ajms2015/index.php/ajms/article/view/1041/799. Accessed 26 June 2019

  73. Sierra MJ, Rodríguez-Alonso J, Millán R (2012) Impact of the lavender rhizosphere on the mercury uptake in field conditions. Chemosphere 89:1457–1466. https://doi.org/10.1016/j.chemosphere.2012.06.017

  74. Sinha A, Khare SK (2012) Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation 23:25–34. https://doi.org/10.1007/s10532-011-9483-z

  75. Soni SK, Singh R, Awasthi A, Kalra A (2014) A Cr (VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr (VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ Sci Pollut R 21:1971–1979. https://doi.org/10.1007/s11356-013-2098-7

  76. Sun W, Xiong Z, Chu L, Li W, Soares MA, White JF Jr, Li H (2018) Bacterial communities of three plant species from Pb-Zn contaminated sites and plant-growth promotional benefits of endophytic Microbacterium sp. (strain BXGe71). J Hazard Mater 370:225–231. https://doi.org/10.1016/j.jhazmat.2018.02.003

  77. Szymańska S, Płociniczak T, Piotrowska-Seget Z, Hrynkiewicz K (2016) Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L.–community structure and metabolic potential. Microbiol Res 192:37–51. https://doi.org/10.1016/j.micres.2016.05.012

  78. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175. https://doi.org/10.1002/tox.10116

  79. Thijs S, Sillen W, Weyens N, Vangronsveld J (2017) Phytoremediation: state-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int J Phytoremediation 19:23–38. https://doi.org/10.1080/15226514.2016.1216076

  80. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. https://doi.org/10.1099/ijs.0.016949-0

  81. Velásquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713–716. https://doi.org/10.1016/j.jhazmat.2009.01.044

  82. Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831. https://doi.org/10.1093/nar/19.24.6823

  83. Wang Y, Wiatrowski HA, John R, Lin CC, Young LY, Kerkhof LJ, Barkay T (2013) Impact of mercury on denitrification and denitrifying microbial communities in nitrate enrichments of subsurface sediments. Biodegradation 24:33–46. https://doi.org/10.1007/s10532-012-9555-8

  84. Wang X, He Z, Luo H, Zhang M, Zhang D, Pan X, Gadd GM (2018) Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci Total Environ 615:615–623. https://doi.org/10.1016/j.scitotenv.2017.09.336

  85. White O (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577. https://doi.org/10.1126/science.286.5444.1571

  86. Yu Z, Li J, Li Y, Wang Q, Zhai X, Wu G, Li X (2014) A mer operon confers mercury reduction in a Staphylococcus epidermidis strain isolated from Lanzhou reach of the Yellow River. Int Biodeterior Biodegrad 90:57–63. https://doi.org/10.1016/j.ibiod.2014.02.002

  87. Zhao H, Xia B, Fan C, Zhao P, Shen S (2012) Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci Total Environ 417-418:45–54. https://doi.org/10.1016/j.scitotenv.2011.12.047

Download references


This research was financially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/grant 409062/2018-9), and Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT/grant 568258/2014).

Author information

Correspondence to Marcos Antônio Soares.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Diane Purchase

Electronic supplementary material


(DOCX 174 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mariano, C., Mello, I.S., Barros, B.M. et al. Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-07913-2

Download citation


  • Microbacterium
  • Enterobacter
  • Rhizoremediation
  • Toxic metal
  • Bioaccumulation
  • Bioremediation