Advertisement

Marine alga “Bifurcaria bifurcata”: biosorption of Reactive Blue 19 and methylene blue from aqueous solutions

  • Said Bouzikri
  • Nadia Ouasfi
  • Naoual Benzidia
  • Anas Salhi
  • Salem Bakkas
  • Layachi KhamlicheEmail author
Industrial and Environmental Processes for Water Treatment and Reuse
  • 8 Downloads

Abstract

In this study, we have investigated the removal efficiency of two organic pollutants: methylene blue (MB) and Reactive Blue 19 (RB19) dyes by using a brown marine alga abundantly available on the Moroccan coastlines called Bifurcaria bifurcata (Bif-Bcata). During the experiments that were conducted in batch mode, we have studied the effect of some parameters such as pH, Bif-Bcata mass, contact time, and initial dye concentration in order to optimize the most suitable biosorption conditions. The biosorption tests on Bif-Bcata showed that the equilibrium is reached after 15 min for both dyes MB and RB19. The optimal pH values are 5.6 and 1.0 for MB and RB19, respectively. Kinetic studies revealed that the biosorption of both dyes follows the pseudo-second-order model. The biosorption isotherms demonstrated that the Langmuir model is the most appropriate to describe the biosorption equilibrium for both dyes MB and RB19 with maximum biosorption capacities reaching 2744.5 mg/g for MB and 88.7 mg/g for RB19. According to these results, it is clear that Bif-Bcata can be considered a promising biomaterial to be used as an effective biosorbent for the elimination of cationic and anionic dyes from textile effluents.

Keywords

Biosorption Alga Bifurcaria bifurcata Methylene blue Reactive Blue 19 

Notes

Acknowledgments

The authors gratefully acknowledge the CUR CA2D and Littomer of Chouaïb Doukkali University (El Jadida-Morocco) for their support. The authors would also like to thank Professors Charafeddine Jama (University of Lille) and Fouad Bentiss (Faculty of Sciences, UCD, El Jadida) for their valuable collaboration.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aarfane A, Salhi A, El Krati M et al (2014a) Etude cinétique et thermodynamique de l’adsorption des colorants Red195 et Bleu de méthylène en milieu aqueux sur les cendres volantes et les mâchefers. J Mater Environ Sci 5:1927–1939Google Scholar
  2. Aarfane A, Salhi A, El Krati M et al (2014b) Kinetic and thermodynamic study of the adsorption of Red195 and methylene blue dyes on fly ash and bottom ash in aqueous medium. J Mater Environ Sci 5:1927–1939Google Scholar
  3. Ada K, Ergene A, Tan S, Yalçin E (2009) Adsorption of Remazol Brilliant Blue R using ZnO fine powder: equilibrium, kinetic and thermodynamic modeling studies. J Hazard Mater 165:637–644.  https://doi.org/10.1016/j.jhazmat.2008.10.036 CrossRefGoogle Scholar
  4. Ahmad MA, Ahmad N, Bello OS (2015) Removal of Remazol Brilliant Blue reactive dye from aqueous solutions using watermelon rinds as adsorbent. J Dispers Sci Technol 36:845–858.  https://doi.org/10.1080/01932691.2014.925400 CrossRefGoogle Scholar
  5. Ait Ahsaine H, El Jaouhari A, Slassi A et al (2016) Electronic band structure and visible-light photocatalytic activity of Bi2WO6: elucidating the effect of lutetium doping. RSC Adv 6:101105–101114.  https://doi.org/10.1039/C6RA22669H CrossRefGoogle Scholar
  6. Ait Ahsaine H, Zbair M, Anfar Z et al (2018) Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: kinetics, equilibrium isotherms and surface statistical modeling. Mater Today Chem.  https://doi.org/10.1016/j.mtchem.2018.03.004 CrossRefGoogle Scholar
  7. Al-Harahsheh MS, Al Zboon K, Al-Makhadmeh L et al (2015) Fly ash based geopolymer for heavy metal removal: a case study on copper removal. J Environ Chem Eng 3:1669–1677.  https://doi.org/10.1016/j.jece.2015.06.005 CrossRefGoogle Scholar
  8. Al-Zboon K, Al-Harahsheh MS, Hani FB (2011) Fly ash-based geopolymer for Pb removal from aqueous solution. J Hazard Mater 188:414–421.  https://doi.org/10.1016/j.jhazmat.2011.01.133 CrossRefGoogle Scholar
  9. Al-Zboon KK, Al-smadi BM, Al-Khawaldh S (2016) Natural volcanic tuff-based geopolymer for Zn removal: adsorption isotherm, kinetic, and thermodynamic study. Water Air Soil Pollut 227:248–222.  https://doi.org/10.1007/s11270-016-2937-5 CrossRefGoogle Scholar
  10. Anfar Z, El Haouti R, Lhanafi S et al (2017) Treated digested residue during anaerobic co-digestion of Agri-food organic waste: methylene blue adsorption, mechanism and CCD-RSM design. J Environ Chem Eng 5:5857–5867.  https://doi.org/10.1016/j.jece.2017.11.015 CrossRefGoogle Scholar
  11. Anfar Z, Ait Ahsaine H, Zbair M, et al (2019) Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review. Crit Rev Environ Sci Technol 1–42. doi:  https://doi.org/10.1080/10643389.2019.1642835
  12. Anoop Krishnan K, Ajmal K, Faisal AK, Liji TM (2015) Kinetic and isotherm modeling of methylene blue adsorption onto kaolinite clay at the solid-liquid interface. Sep Sci Technol 50:1147–1157.  https://doi.org/10.1080/01496395.2014.965832 CrossRefGoogle Scholar
  13. Badri N, Zbair M, Sahibed-Dine A et al (2018) Adsorption of cationic dyes by waste biomass treated by phosphoric acid. J Mater Environ Sci 9:1636–1644.  https://doi.org/10.26872/jmes.2018.9.6.182 CrossRefGoogle Scholar
  14. Banaei A, Samadi S, Karimi S et al (2017) Synthesis of silica gel modified with 2,2′-(hexane-1,6-diylbis(oxy)) dibenzaldehyde as a new adsorbent for the removal of Reactive Yellow 84 and Reactive Blue 19 dyes from aqueous solutions: equilibrium and thermodynamic studies. Powder Technol 319:60–70.  https://doi.org/10.1016/j.powtec.2017.06.044 CrossRefGoogle Scholar
  15. Ben Mansour H, Corroler D, Barillier D, Ghedira K, Chekir L, Mosrati R (2007) Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food Chem Toxicol 45:1670–1677.  https://doi.org/10.1016/j.fct.2007.02.033 CrossRefGoogle Scholar
  16. Ben Mansour H, Barillier D, Corroler D, Ghedira K, Chekir-Ghedira L, Mosrati R (2009) In vitro study of DNA damage induced by acid orange 52 and its biodegradation derivatives. Environ Toxicol Chem 28:489–495.  https://doi.org/10.1897/08-333.1 CrossRefGoogle Scholar
  17. Benzidia N, Salhi A, Bakkas S, Khamliche L (2015) Biosorption of copper Cu (II) in aqueous solution by chemically modified crushed marine algae (Bifurcaria bifurcata): equilibrium and kinetic studies. Mediterranean Journal of Chemistry 4:85–92.  https://doi.org/10.13171/mjc.4.2.2015.08.04.11.19/khamliche CrossRefGoogle Scholar
  18. Benzidia N, Salhi A, Bentiss F et al (2017) Kinetics and equilibrium studies on biosorption of cadmium and lead ions from aqueous solutions by chemically modified algae Bifurcaria bifurcata. J Mater Environ Sci 8:4778–4784Google Scholar
  19. Chinoune K, Bentaleb K, Bouberka Z et al (2016) Adsorption of reactive dyes from aqueous solution by dirty bentonite. Appl Clay Sci 123:64–75.  https://doi.org/10.1016/j.clay.2016.01.006 CrossRefGoogle Scholar
  20. Cusioli LF, Quesada HB, Baptista ATA et al (2019) Soybean hulls as a low-cost biosorbent for removal of methylene blue contaminant. Environ Prog Sustain Energy.  https://doi.org/10.1002/ep.13328
  21. DeVito SC (1993) Predicting azo dye toxicity. Crit Rev Environ Sci Technol 12:405–414.  https://doi.org/10.1080/10643389309388453 CrossRefGoogle Scholar
  22. dos Santos KJL, dos Santos GE de Sá ÍMGLGL, et al (2019) Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresour Technol 293:122093. Doi:  https://doi.org/10.1016/j.biortech.2019.122093 CrossRefGoogle Scholar
  23. El Atouani S, Belattmania Z, Reani A et al (2019) Brown seaweed Sargassum muticum as low-cost biosorbent of methylene blue. Int J Environ Res 13:131–142.  https://doi.org/10.1007/s41742-018-0161-4 CrossRefGoogle Scholar
  24. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10.  https://doi.org/10.1016/j.cej.2009.09.013 CrossRefGoogle Scholar
  25. Freundlich H (1907) Über die adsorption in Lösungen. Z Phys Chem 57U.  https://doi.org/10.1515/zpch-1907-5723
  26. Ganesh R, Boardman GD, Michelsen D (1994) Fate of azo dyes in sludges. Water Res 28:1367–1376.  https://doi.org/10.1016/0043-1354(94)90303-4 CrossRefGoogle Scholar
  27. Ghosh K, Bar N, Biswas AB, Das SK (2019) Removal of methylene blue (aq) using untreated and acid-treated eucalyptus leaves and GA-ANN modelling. Can J Chem Eng 97:2883–2898.  https://doi.org/10.1002/cjce.23503 CrossRefGoogle Scholar
  28. Haffad H, Zbair M, Anfar Z et al (2019) Removal of reactive red-198 dye using chitosan as an adsorbent: optimization by central composite design coupled with response surface methodology. Toxin rev 1–13. doi:  https://doi.org/10.1080/15569543.2019.1584822
  29. Hamdaoui O, Chiha M (2007) Removal of methylene blue from aqueous solutions by wheat bran. Acta Chim Slov 54:407–418Google Scholar
  30. Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689.  https://doi.org/10.1016/j.jhazmat.2005.12.043 CrossRefGoogle Scholar
  31. Hu C, Hu N, Li X et al (2017) Adsorption of remazol brilliant blue R by carboxylated multi-walled carbon nanotubes. Desalin Water Treat 62:282–289.  https://doi.org/10.5004/dwt.2017.20145 CrossRefGoogle Scholar
  32. Kloareg PB (1991) Structure and propriétés d’échange des parois cellulaires des algues brunes. Implications écophysiologiques. Bull la Soc Bot Fr Actual Bot 138:305–318.  https://doi.org/10.1080/01811789.1991.10827076 CrossRefGoogle Scholar
  33. Lakshmipathy R, Sarada NC (2016) Methylene blue adsorption onto native watermelon rind: batch and fixed bed column studies. Desalin Water Treat 25:10632–10645.  https://doi.org/10.1080/19443994.2015.1040462 CrossRefGoogle Scholar
  34. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I Solids J Am Chem Soc 38:2221–2295.  https://doi.org/10.1021/ja02268a002 CrossRefGoogle Scholar
  35. Lazim ZM, Mazuin E, Hadibarata T, Yusop Z (2015) The removal of methylene blue and Remazol Brilliant Blue R Dyes by using orange peel and spent tea leaves. J Teknol 74:129–135.  https://doi.org/10.11113/jt.v74.4882 CrossRefGoogle Scholar
  36. Mafra MR, Igarashi-Mafra L, Zuim DR et al (2013) Adsorption of remazol brilliant blue on an orange peel adsorbent. Braz J Chem Eng 30:657–665.  https://doi.org/10.1590/S0104-66322013000300022 CrossRefGoogle Scholar
  37. Monsef Khoshhesab Z, Ahmadi M (2016) Removal of reactive blue 19 from aqueous solutions using NiO nanoparticles: equilibrium and kinetic studies. Desalin Water Treat 57:20037–20048.  https://doi.org/10.1080/19443994.2015.1101713 CrossRefGoogle Scholar
  38. Ouasfi N, Bouzekri S, Zbair M et al (2019a) Carbonaceous material prepared by ultrasonic assisted pyrolysis from algae (Bifurcaria bifurcata): response surface modeling of aspirin removal. Surfaces and Interfaces 14:61–71.  https://doi.org/10.1016/j.surfin.2018.11.008 CrossRefGoogle Scholar
  39. Ouasfi N, Zbair M, Bouzikri S et al (2019b) Selected pharmaceuticals removal using algae derived porous carbon: experimental{,} modeling and DFT theoretical insights. RSC Adv 9:9792–9808.  https://doi.org/10.1039/C9RA01086F CrossRefGoogle Scholar
  40. Silva MMF, Oliveira MM, Avelino MC et al (2012) Adsorption of an industrial anionic dye by modified-KSF-montmorillonite: evaluation of the kinetic, thermodynamic and equilibrium data. Chem Eng J 203:259–268.  https://doi.org/10.1016/j.cej.2012.07.009 CrossRefGoogle Scholar
  41. Tenev MD, Farías A, Torre C et al (2019) Cotton industry waste as adsorbent for methylene blue. J Sustain Dev Energy, Water Environ Syst 7:667–677.  https://doi.org/10.13044/j.sdewes.d7.0269 CrossRefGoogle Scholar
  42. Tran HN, Chao HP (2018) Adsorption and desorption of potentially toxic metals on modified biosorbents through new green grafting process. Environ Sci Pollut Res 25:12808–12820.  https://doi.org/10.1007/s11356-018-1295-9 CrossRefGoogle Scholar
  43. Tran HN, Chao H-P, You S-J (2017a) Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations. Adsorpt Sci Technol 36:95–113.  https://doi.org/10.1177/0263617416684837 CrossRefGoogle Scholar
  44. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017b) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116.  https://doi.org/10.1016/j.watres.2017.04.014 CrossRefGoogle Scholar
  45. Tran HN, You SJ, Nguyen TV, Chao HP (2017c) Insight into the adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes. Chem Eng Commun 204:1020–1036.  https://doi.org/10.1080/00986445.2017.1336090 CrossRefGoogle Scholar
  46. Weber WJ, Morris JC (1963) Kinetics of adsorption carbon from solutions. J Sanit Engeering Div Proceedings Am Soc Civ Eng 89:31–60Google Scholar
  47. Zbair M, Ainassaari K, Drif A, Ojala S, Bottlinger M, Pirilä M, Keiski RL, Bensitel M, Brahmi R (2018a) Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ Sci Pollut Res 25:1869–1882.  https://doi.org/10.1007/s11356-017-0634-6 CrossRefGoogle Scholar
  48. Zbair M, Ainassaari K, El Assal Z et al (2018b) Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology. Environ Sci Pollut Res 25:35657–35671.  https://doi.org/10.1007/s11356-018-3455-3 CrossRefGoogle Scholar
  49. Zbair M, Anfar Z, Ait Ahsaine H et al (2018c) Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: operational factors, mechanism and performance optimization using central composite design and surface modeling. J Environ Manag.  https://doi.org/10.1016/j.jenvman.2017.10.058 CrossRefGoogle Scholar
  50. Zbair M, Anfar Z, Khallok H et al (2018d) Adsorption kinetics and surface modeling of aqueous methylene blue onto activated carbonaceous wood sawdust. Fullerenes Nanotub Carbon Nanostructures 26:433–442.  https://doi.org/10.1080/1536383X.2018.1447564 CrossRefGoogle Scholar
  51. Zbair M, Bottlinger M, Ainassaari K, Ojala S, Stein O, Keiski RL, Bensitel M, Brahmi R (2018e) Hydrothermal carbonization of argan nut shell: functional mesoporous carbon with excellent performance in the adsorption of bisphenol A and diuron. Waste and Biomass Valorization:1–20.  https://doi.org/10.1007/s12649-018-00554-0
  52. Zbair M, Ahsaine HA, Anfar Z, Slassi A (2019a) Carbon microspheres derived from walnut shell: rapid and remarkable uptake of heavy metal ions, molecular computational study and surface modeling. Chemosphere 231:140–150.  https://doi.org/10.1016/j.chemosphere.2019.05.120 CrossRefGoogle Scholar
  53. Zbair M, Anfar Z, Ait Ahsaine H, Khallok H (2019b) Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Adv 9:1084–1094.  https://doi.org/10.1039/C8RA09337G CrossRefGoogle Scholar
  54. Zeghoud L, Gouamid M, Ben Mya O, Rebiai A, Saidi M (2019) Adsorption of methylene blue dye from aqueous solutions using two different parts of palm tree: palm frond base and palm leaflets. Water Air Soil Pollut 230:195–199.  https://doi.org/10.1007/s11270-019-4255-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of Science, Laboratory of Organic Chemistry, Bioorganic and EnvironmentUniversity Chouaïb DoukkaliEl JadidaMorocco

Personalised recommendations