Advertisement

Hematological parameters and hair mercury levels in adolescents from the Colombian Caribbean

  • Alejandra Manjarres-Suarez
  • Jesus Olivero-VerbelEmail author
Research Article
  • 29 Downloads

Abstract

Mercury (Hg) is one of the heavy metals of concern for fish-eating populations. This pollutant can be released from many sources and generates diverse toxic effects in humans. The aim of this study was to evaluate hematological parameters and their relationship with total Hg (T-Hg) levels in the hair of adolescents from Tierrabomba, an island close to an industrialized area, and also from San Onofre, a reference site. Blood and hair samples were collected from 194 individuals, aged 11–18 years old, as well as sociodemographic and dietary information. The hematological profile showed marked differences between the two sites. Mean values for almost all variables of the red blood cell line, as well as lymphocyte percentage (LYM%) and monocyte percentage (MID%), were greater in Tierrabomba. In contrast, red cell distribution width (RDW), white blood cells (WBC), granulocyte percentage (GRA%), and plateletcrit (PTC) were higher at the reference site. Total Hg mean in Tierrabomba was 1.10 ± 0.07 μg/g, while at San Onofre, it was 1.87 ± 0.11 μg/g. In both places, more than 49% of participants had Hg concentrations over the limit threshold (1 μg/g). Overall mean corpuscular hemoglobin concentration (MCHC) and T-Hg showed a negative correlation (r = − 0.162, p = 0.024). However, positive associations were observed between T-Hg and MID% for Tierrabomba (r = 0.193, p = 0.041), and between T-Hg and mixed cells (MID) for the reference site (r = 0.223, p = 0.044). A significant relationship was found for fish consumption frequency and T-Hg levels (r = 0.360, p < 0.001). These results indicate blood parameters may be affected by Hg even at low-level exposure.

Keywords

Blood cell lines Biomarker Heavy metal Mercury exposure Fish consumption Human health 

Notes

Acknowledgments

The authors are grateful to Tierrabomba Island Community Councils, the School Community of Berrugas (San Onofre), Doctor Dager Berrio, Neda Alvarez, and Javier Galvis.

Funding information

This study was funded by Colciencias-University of Cartagena (Grant 110777757883, 778/2017) and The National Program for Doctoral Formation (Colciencias, 727-2015).

Compliance with ethical standards

This research was performed in compliance with international and national standards of bioethics studies in humans, particularly, the Declaration of Helsinki. Ethical approval was obtained from the Ethics Committee of the University of Cartagena (Act No. 97 of June 02, 2017). Informed consent and written assent were obtained after explaining the study in full, and those who volunteered to participate were included.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2020_7738_MOESM1_ESM.docx (75 kb)
ESM 1 (DOCX 74.5 kb)

References

  1. Adris N, Chua ACG, Knuiman MW, Divitini ML, Trinder D, Olynyk JK (2018) A prospective cohort examination of haematological parameters in relation to cancer death and incidence: the Busselton Health Study. BMC Cancer 18(1):863.  https://doi.org/10.1186/s12885-018-4775-x
  2. Aduayom I, Denizeau F, Jumarie C (2005) Multiple effects of mercury on cell volume regulation, plasma membrane permeability, and thiol content in the human intestinal cell line Caco-2. Cell Biol Toxicol 21(3–4):163–179.  https://doi.org/10.1007/s10565-005-0157-7 CrossRefGoogle Scholar
  3. ATSDR Agency for Toxic Substances and Disease Registry (1999) Toxicological profile for mercury. U.S. Department of Health and Humans Services. Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf
  4. Ali H, Ilahi I, Khan E (2019, 2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem.  https://doi.org/10.1155/2019/6730305 Google Scholar
  5. Alonso D, Pineda P, Olivero J, González H, Campos N (2000) Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Colombia. Environ Pollut 109(1):157–163.  https://doi.org/10.1016/S0269-7491(99)00225-0 CrossRefGoogle Scholar
  6. Alvarez-Ortega N, Caballero-Gallardo K, Olivero-Verbel J (2017) Low blood lead levels impair intellectual and hematological function in children from Cartagena, Caribbean coast of Colombia. J Trace Elem Med Biol 44:233–240.  https://doi.org/10.1016/j.jtemb.2017.08.006 CrossRefGoogle Scholar
  7. Avellan A, Stegemeier JP, Gai K, Dale J, Hsu-Kim H, Levard C, O’Rear D, Hoelen TP, Lowry GV (2018) Speciation of mercury in selected areas of the petroleum value chain. Environ Sci Technol 52(3):1655–1664CrossRefGoogle Scholar
  8. Aruch D, Mascarenhas J (2016) Contemporary approach to essential thrombocythemia and polycythemia vera. Curr Opin Hematol 23(2):150–160.  https://doi.org/10.1097/MOH.0000000000000216 CrossRefGoogle Scholar
  9. Atto V, Bléyéré NM, Konan BA, Amonkan KA, Kouakou KL, Bouafou KGM, Kouassi D, Datté YJ, Yapo AP (2012) Haematological profile of adolescents in Abidjan (Côte d’Ivoire). Int J Biosci 2(6):1–12Google Scholar
  10. Basu N, Horvat M, Evers DC, Zastenskaya I, Weihe P, Tempowski J (2018) A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ Health Perspect 126(10):106001–106014CrossRefGoogle Scholar
  11. Behera S, Bulliyya G (2016) Magnitude of anemia and hematological predictors among children under 12 years in Odisha, India. Anemia 2016:1729147.  https://doi.org/10.1155/2016/1729147 CrossRefGoogle Scholar
  12. Bridges CC, Zalups RK (2017) Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 91(1):63–81.  https://doi.org/10.1007/s00204-016-1803-y CrossRefGoogle Scholar
  13. Buchanan AM, Muro FJ, Gratz J, Crump JA, Musyoka AM, Sichangi MW, Morrissey AB, M’rimberia JK, Njau BN, Msuya LJ, Bartlett JA, Cunningham CK (2010) Establishment of haematological and immunological reference values for healthy Tanzanian children in Kilimanjaro Region. Tropical Med Int Health 15(9):1011–1021.  https://doi.org/10.1111/j.1365-3156.2010.02585.x
  14. Buseri FI, Siaminabo IJ, Jeremiah ZA (2010) Reference values of hematological indices of infants, children, and adolescents in Port Harcourt, Nigeria. Pathol Lab Med Int 2:65–70.  https://doi.org/10.2147/PLMI.S9988
  15. Chen CF, Chen CW, Dong CD, Ju YR, Lin GT (2018) Methylmercury in industrial harbor sediments in Taiwan: first observations on its occurrence, distribution, and measurement. Int J Environ Res Public Health 15(8):E1765.  https://doi.org/10.3390/ijerph15081765 CrossRefGoogle Scholar
  16. Cogua P, Campos-Campos NH, Duque G (2012) Total mercury and methylmercury concentration in sediment and seston of Cartagena Bay, Colombian Caribbean. Bol Invest Mar Cost 41(2):267–285Google Scholar
  17. Dolbec J, Mergler D, Larribe F, Roulet M, Lebel J, Lucotte M (2001) Sequential analysis of hair mercury levels in relation to fish diet of an Amazonian population, Brazil. Sci Total Environ 271(1–3): 87–97.  https://doi.org/10.1016/S0048-9697(00)00835-4 CrossRefGoogle Scholar
  18. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983.  https://doi.org/10.1021/es305071v CrossRefGoogle Scholar
  19. Ekawanti A, Krisnayanti BD (2015) Effect of mercury exposure on renal function and hematological parameters among artisanal and small-scale gold miners at Sekotong, West Lombok, Indonesia. J Health Pollut 5(9):25–32.  https://doi.org/10.5696/2156-9614-5-9.25 CrossRefGoogle Scholar
  20. Fernandes Azevedo B, Barros Furieri L, Peçanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simões M, Fiorim J, Rossi de Batista P, Fioresi M, Rossoni L, Stefanon I, Alonso MJ, Salaices M, Valentim Vassallo D (2012) Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol 2012:949048.  https://doi.org/10.1155/2012/949048 CrossRefGoogle Scholar
  21. Fernandez-Maestre R, Johnson-Restrepo B, Olivero-Verbel J (2018) Heavy metals in sediments and fish in the Caribbean coast of Colombia: assessing the environmental risk. Int J Environ Res 12(3):289–301.  https://doi.org/10.1007/s41742-018-0091-1 CrossRefGoogle Scholar
  22. Figueiredo NL, Canário J, Duarte A, Serralheiro ML, Carvalho C (2014) Isolation and characterization of mercury-resistant bacteria from sediments of Tagus Estuary (Portugal): implications for environmental and human health risk assessment. J Toxicol Environ Health A 77(1–3):155–168.  https://doi.org/10.1080/15287394.2014.867204 CrossRefGoogle Scholar
  23. Fonseca MF, De Souza HS, Grandjean P, Choi AL, Bastos WR (2014) Iron status as a covariate in methylmercury-associated neurotoxicity risk. Chemosphere 100:89–96.  https://doi.org/10.1016/j.chemosphere.2013.12.053 CrossRefGoogle Scholar
  24. Freitas JS, Lacerda EMCB, Rodrigues Júnior D, Corvelo TCO, Silveira LCL, Pinheiro MDCN, Souza GS (2019) Mercury exposure of children living in Amazonian villages: influence of geographical location where they lived during prenatal and postnatal development. An Acad Bras Cienc 91(suppl 1):e20180097.  https://doi.org/10.1590/0001-3765201920180097
  25. Giangrosso G, Cammilleri G, Macaluso A, Vella A, D’Orazio N, Graci S, Lo Dico GM, Galvano F, Giangrosso M, Ferrantelli V (2016) Hair mercury levels detection in fishermen from Sicily (Italy) by ICP-MS method after microwave-assisted digestion. Bioinorg Chem Appl 2016:5408014.  https://doi.org/10.1155/2016/5408014 CrossRefGoogle Scholar
  26. Gratz LE, Keeler GJ, Morishita M, Barres JA, Dvonch JT (2013) Assessing the emission sources of atmospheric mercury in wet deposition across Illinois. Sci Total Environ 448:120–131.  https://doi.org/10.1016/j.scitotenv.2012.11.011 CrossRefGoogle Scholar
  27. Grisaru D, Pick M, Perry C, Sklan EH, Almog R, Goldberg I, Naparstek E, Lessing JB, Soreq H, Deutsch V (2006) Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses. J Immunol 176(1):27–35.  https://doi.org/10.4049/jimmunol.176.1.27 CrossRefGoogle Scholar
  28. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24.  https://doi.org/10.3109/10408449509089885 CrossRefGoogle Scholar
  29. Haziri I, Mane B, Nuraj P, Haziri A, Faiku F, Bytyqi-Damoni A, Hulaj B, Latifi F (2013) Hematological effects of mercury in hybrid birds Isa brown. Eur J Exp Biol 3(1):185–190Google Scholar
  30. Houston MC (2007) The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med 13(2):S128–S133Google Scholar
  31. Ishikawa NM, Ranzani-Paiva MJT, Lombardi JV, Ferreira CM (2007) Hematological parameters in Nile Tilápia, Oreochromis niloticus exposed to sub-letal concentrations of mercury. Braz Arch Biol Techn 50(4):619–626.  https://doi.org/10.1590/S1516-89132007000400007 CrossRefGoogle Scholar
  32. Janicka M, Binkowski ŁJ, Błaszczyk M, Paluch J, Wojtaś W, Massanyi P, Stawarz R (2015) Cadmium, lead and mercury concentrations and their influence on morphological parameters in blood donors from different age groups from southern Poland. J Trace Elem Med Biol 29:342–346.  https://doi.org/10.1016/j.jtemb.2014.10.002 CrossRefGoogle Scholar
  33. Jaramillo-Colorado BE, Arroyo-Salgado B, Ruiz-Garcés LC (2015) Organochlorine pesticides and parasites in Mugil incilis collected in Cartagena Bay, Colombia. Environ Sci Pollut Res 22(22):17475–17485.  https://doi.org/10.1007/s11356-015-4986-5 CrossRefGoogle Scholar
  34. Johnson-Restrepo B, Olivero-Verbel J, Lu S, Guette-Fernández J, Baldiris-Avila R, O’Byrne-Hoyos I, Aldous KM, Addink R, Kannan K (2008) Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ Pollut 151(3):452–459.  https://doi.org/10.1016/j.envpol.2007.04.011 CrossRefGoogle Scholar
  35. Kellner A, Kellner V, Rajnics P, Karádi E, Illés A, Demeter J, Homor L, Udvardy M, Dombi P, Andrikovics H, Herczeg J, Egyed (2018) Low mean cell haemoglobin is a valuable parameter of thrombotic risk stratification in patients with polycythemia vera. J Blood Lymph 8(1): 207.  https://doi.org/10.4172/2165-7831.1000207
  36. Kim J, Heo JH, Kim YD, Lee HS, Nam CM, Nam HS, Song TJ, Park JH (2012) Red blood cell distribution width is associated with poor clinical outcome in acute cerebral infarction. Thromb Haemost 108(08):349–356.  https://doi.org/10.1160/TH12-03-0165 CrossRefGoogle Scholar
  37. Kružíková K, Modra H, Kenšová R, Skočovská B, Wlasow T, Svoboda T, Svobodová Z (2008) Mercury in human hair as an indicator of the fish consumption. Neuro Endocrinol Lett 29(5):675–679Google Scholar
  38. Lim KM, Kim S, Noh JY, Kim K, Jang WH, Bae ON, Chung SM, Chung JH (2010) Low-level mercury can enhance procoagulant activity of erythrocytes: a new contributing factor for mercury-related thrombotic disease. Environ Health Perspect 118(7):928–935.  https://doi.org/10.1289/ehp.0901473 CrossRefGoogle Scholar
  39. Lippi G, Sanchis-Gomar F, Danese E, Montagnana M (2013) Association of red blood cell distribution width with plasma lipids in a general population of unselected outpatients. Kardiol Pol 71(9):931–936.  https://doi.org/10.5603/KP.2013.0228
  40. Liu JL, Xu XR, Yu S, Cheng H, Peng JX, Hong YG, Feng XB (2014) Mercury contamination in fish and human hair from Hainan Island, South China Sea: implication for human exposure. Environ Res 135:42–47.  https://doi.org/10.1016/j.envres.2014.08.023 CrossRefGoogle Scholar
  41. Lopez R, Loos BG, Baelum V (2012) Hematological features in adolescents with periodontitis. Clin Oral Investig 16(4):1209–1216.  https://doi.org/10.1007/s00784-011-0628-6 CrossRefGoogle Scholar
  42. Lugada ES, Mermin J, Kaharuza F, Ulvestad E, Were W, Langeland N, Asjo B, Malamba S, Downing R (2004) Population-based hematologic and immunologic reference values for a healthy Ugandan population. Clin Diagn Lab Immunol 11(1):29–34.  https://doi.org/10.1128/CDLI.11.1.29-34.2004 CrossRefGoogle Scholar
  43. Mahmood Q, Shaheen S, Bilal M, Tariq M, Zeb BS, Ullah Z, Ali A (2019) Chemical pollutants from an industrial estate in Pakistan: a threat to environmental sustainability. Appl Water Sci 9(3):47–49.  https://doi.org/10.1007/s13201-019-0920-1
  44. Marrugo-Negrete JL, Ruiz-Guzmán JA, Díez S (2013) Relationship between mercury levels in hair and fish consumption in a population living near a hydroelectric tropical dam. Biol Trace Elem Res 151(2):187–194.  https://doi.org/10.1007/s12011-012-9561-z CrossRefGoogle Scholar
  45. Mergler D, Anderson HA, Chan LH, Mahaffey KR., Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. AMBIO 36(1): 3–11.  https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2 CrossRefGoogle Scholar
  46. Montagnana M, Cervellin G, Meschi T, Lippi G (2012) The role of red blood cell distribution width in cardiovascular and thrombotic disorders. Clin Chem Lab Med 50(4):635–641.  https://doi.org/10.1515/cclm.2011.831
  47. Montealegre CC, Dáger GM (2015) Sedimentation in the Cartagena Bay, a socioeconomic impact. Dictamen Libre 16:11–20Google Scholar
  48. Moreno D, Arrieta A (2012) Erosion diagnosis on the northeastern coast of Tierra Bomba Island, in Cartagena de Indias, level of risk and general recommendations for coastal sustainability. I Congreso Iberoamericano de Gestión Integrada de Áreas Litorales. https://observatorio.epacartagena.gov.co/ftp-uploads/pub-diagnostico-de-la-erosion-costera-del-territorio-insular-colombiano.pdf
  49. Mousavi SE, Yousefian M (2012) The alterations in the hematological parameters of endangered Caspian brown trout, Salmo trutta caspius, exposed to waterborne mercuric chloride. Asian J Anim Sci 6(4):154–163.  https://doi.org/10.3923/ajas.2012.154.163 CrossRefGoogle Scholar
  50. Mutua DN, Njagi ENM, Orinda GO (2018) Hematological profile of normal pregnant women. J Blood Lymph 8(2):220.  https://doi.org/10.4172/2165-7831.1000220
  51. Nagababu E, Gulyani S, Earley CJ, Cutler RG, Mattson MP, Rifkind JM (2008) Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic Res 42(9):824–829.  https://doi.org/10.1080/10715760802459879 CrossRefGoogle Scholar
  52. Northrop-Clewes CA, Thurnham DI (2013) Biomarkers for the differentiation of anemia and their clinical usefulness. J Blood Med 4:11–22.  https://doi.org/10.2147/JBM.S29212
  53. Okati N, Esmaili-sari A (2018) Determination of mercury daily intake and hair-to-blood mercury concentration ratio in people resident of the coast of the Persian Gulf, Iran. Arch Environ Contam Toxicol 74(1):140–153.  https://doi.org/10.1007/s00244-017-0456-z CrossRefGoogle Scholar
  54. Olivero-Verbel J, Baldiris-Avila R, Güette-Fernández J, Johnson-Restrepo B, Kunihiko N, Magallanes-Carreazo E, Vanegas-Ramírez L (2008) Human and crab exposure to mercury in the Caribbean coastal shoreline of Colombia: impact from an abandoned chlor-alkali plant. Environ Int 34(4):476–482.  https://doi.org/10.1016/j.envint.2007.10.009 CrossRefGoogle Scholar
  55. Olivero-Verbel J, Caballero-Gallardo K, Torres-Fuentes N (2009) Assessment of mercury in muscle of fish from Cartagena Bay, a tropical estuary at the north of Colombia. Int J Environ Health Res 19(5):343–355.  https://doi.org/10.1080/09603120902749090 CrossRefGoogle Scholar
  56. Olivero-Verbel J, Caballero-Gallardo K, Negrete-Marrugo J (2011) Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia. Biol Trace Elem Res 144(1–3):118–132.  https://doi.org/10.1007/s12011-011-9046-5 CrossRefGoogle Scholar
  57. Olivero-Verbel J, Caballero-Gallardo K, Carranza-Lopez L, Muñoz-Sosa D, Ripoll-Arboleda A (2016) Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environ Sci Pollut Res 23(20):20761–20771.  https://doi.org/10.1007/s11356-016-7255-3 CrossRefGoogle Scholar
  58. Ortiz CH, Castro JA, Badillo ER (2009) Industrialization and growth: threshold effects of technological integration. Cuad Econ 28(51):75–97Google Scholar
  59. Padhy PK, Padhi BK (2009) Effects of biomass combustion smoke on hematological and antioxidant profile among children (8–13 years) in India. Inhal Toxicol 21(8):705–711.  https://doi.org/10.1080/08958370802448961 CrossRefGoogle Scholar
  60. Palacios-Torres Y, Caballero-Gallardo K, Olivero-Verbel J (2018) Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere 193:421–430.  https://doi.org/10.1016/j.chemosphere.2017.10.160 CrossRefGoogle Scholar
  61. Pandey G, Madhuri S, Shrivastav AB (2012) Contamination of mercury in fish and its toxicity to both fish and humans: an overview. Int Res J Pharm 3(11):44–47Google Scholar
  62. Parga-Lozano CH, Marrugo-González AJ, Fernández-Maestre R (2002) Hydrocarbon contamination in Cartagena Bay, Colombia. Mar Pollut Bull 44(1): 71–74.  https://doi.org/10.1016/S0025-326X(01)00201-6 CrossRefGoogle Scholar
  63. Posada BO, Pineda WH, Giraldo DF (2011) Diagnosis of coastal erosion of the Colombian Island territory. Instituto de investigaciones marinas y costeras “José Benito Vives De Andréis” (INVEMAR). http://www.invemar.org.co/redcostera1/invemar/docs/605220080501_AErosionCaribeContinentalColombia.pdf.
  64. Poursafa P, Kelishadi R, Amini A, Amini A, Amin MM, Lahijanzadeh M, Modaresi M (2011) Association of air pollution and hematologic parameters in children and adolescents. J Pediatr 87(4):350–356.  https://doi.org/10.2223/JPED.2115 CrossRefGoogle Scholar
  65. Pramono A, Panunggal B, Rahfiludin MZ, Swastawati F (2017) Low zinc serum levels and high blood lead levels among school-age children in coastal area. IOP Conf Ser Earth Environ Sci 55(1):012058.  https://doi.org/10.1088/1755-1315/55/1/012058 CrossRefGoogle Scholar
  66. Ramos A, Quintana PJ, Ji M (2014) Hair mercury and fish consumption in residents of O‘ahu, Hawai’i. Hawaii J Med Public Health 73(1):19–25Google Scholar
  67. Rathnasuriya MI, Jinadasa BKK, Madhujith T (2018) Hair mercury levels and dietary exposure of mercury in relation to fish consumption among coastal population in Negombo, Sri Lanka. Sri Lanka J Aquat Sci 23(2):179–186.  https://doi.org/10.4038/sljas.v23i2.7559 CrossRefGoogle Scholar
  68. Rezende SM, Lijfering WM, Rosendaal FR, Cannegieter SC (2014) Hematologic variables and venous thrombosis: red cell distribution width and blood monocyte count are associated with an increased risk. Haematologica 99(1):194–200.  https://doi.org/10.3324/haematol.2013.083840 CrossRefGoogle Scholar
  69. Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74–83.  https://doi.org/10.3961/jpmph.2014.47.2.74 CrossRefGoogle Scholar
  70. Romeo J, Wärnberg J, Gómez-Martínez S, Díaz LE, Moreno LA, Castillo MJ, Redondo C, Baraza JC, Sola R, Zamora S, Marcos A, AVENA group (2009) Haematological reference values in Spanish adolescents: the AVENA study. Eur J Haematol 83(6):586–594.  https://doi.org/10.1111/j.1600-0609.2009.01326.x CrossRefGoogle Scholar
  71. Salvagno GL, Sanchis-Gomar F, Picanza A, Lippi G (2015) Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci 52(2):86–105.  https://doi.org/10.3109/10408363.2014.992064 CrossRefGoogle Scholar
  72. Sanfeliu C, Sebastià J, Cristòfol R, Rodríguez-Farré E (2003) Neurotoxicity of organomercurial compounds. Neurotox Res 5(4):283–305.  https://doi.org/10.1007/BF03033386 CrossRefGoogle Scholar
  73. Schaefer A, Jensen E, Bossart G, Reif J (2014) Hair mercury concentrations and fish consumption patterns in Florida residents. Int J Environ Res Public Health 11(7):6709–6726.  https://doi.org/10.3390/ijerph110706709 CrossRefGoogle Scholar
  74. Sharma S, Pujani M, Pahuja S, Chandra J, Rath B, Labhchand (2010) Critical evaluation of peripheral smear in cases of anemia with high mean corpuscular hemoglobin concentration in children: a series of four cases. Indian J Pathol Microbiol 53(4):820–823.  https://doi.org/10.4103/0377-4929.72094 CrossRefGoogle Scholar
  75. Sherman LS, Blum JD, Franzblau A, Basu N (2013) New insight into biomarkers of human mercury exposure using naturally occurring mercury stable isotopes. Environ Sci Technol 47(7):3403–3409CrossRefGoogle Scholar
  76. Sunderland EM, Selin NE (2013) Future trends in environmental mercury concentrations: implications for prevention strategies. Environ Health 12(1):2.  https://doi.org/10.1186/1476-069X-12-2
  77. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch A (eds) Molecular, clinical and environmental toxicology. Exp suppl 101: 133–164 Springer, Basel.  https://doi.org/10.1007/978-3-7643-8340-4_6 Google Scholar
  78. Territorial Health Plan 2008-2011 (2008) “San Onofre, the friendly face of Sucre”. http://cdim.esap.edu.co/BancoMedios/Documentos%20PDF/sanonofresucrepts2008-2011pdf.pdf
  79. Tesfaye M, Yemane T, Adisu W, Asres Y, Gedefaw L (2015) Anemia and iron deficiency among school adolescents: burden, severity, and determinant factors in southwest Ethiopia. Adolesc Health Med Ther 6:189–196.  https://doi.org/10.2147/AHMT.S94865
  80. Thongra-ar W, Parkpian P (2002) Total mercury concentrations in coastal areas of Thailand: a review. Sci Asia 28:301–312.  https://doi.org/10.2306/scienceasia1513-1874.2002.28.301
  81. Tkaczyszyn M, Comín-Colet J, Voors AA, van Veldhuisen DJ, Enjuanes C, Moliner-Borja P, Rozentryt P, Poloński L, Banasiak W, Ponikowski P, van der Meer P, Jankowska EA (2018) Iron deficiency and red cell indices in patients with heart failure. Eur J Heart Fail 20(1):114–122.  https://doi.org/10.1002/ejhf.820 CrossRefGoogle Scholar
  82. Tong Y, Wang M, Bu X, Guo X, Lin Y, Lin H, Li J, Zhang W, Wang X (2017) Mercury concentrations in China’s coastal waters and implications for fish consumption by vulnerable populations. Environ Pollut 231:396–405.  https://doi.org/10.1016/j.envpol.2017.08.030 CrossRefGoogle Scholar
  83. Toro PA, Arismendy NG, Acevedo AR (2010) Hematological profile of gold mining workers exposed to metallic mercury vapors in the municipality of Amalfi, Antioquia. Hechos Microbiológicos 1(1):27–38Google Scholar
  84. Tosic M, Restrepo JD, Lonin S, Izquierdo A, Martins F (2019) Water and sediment quality in Cartagena Bay, Colombia: seasonal variability and potential impacts of pollution. Estuar Coast Shelf Sci 216:187–203.  https://doi.org/10.1016/j.ecss.2017.08.013 CrossRefGoogle Scholar
  85. U.S. EPA - United States Environmental Protection Agency (1997) Mercury study report to congress. EPA-452/R-97-003. https://www3.epa.gov/airtoxics/112nmerc/volume1.pdf Accessed 3 September 2019
  86. Vasunilashorn S, Crimmins EM, Kim JK, Winking J, Gurven M, Kaplan H, Finch CE (2010) Blood lipids, infection, and inflammatory markers in the Tsimane of Bolivia. Am J Hum Biol 22(6):731–740.  https://doi.org/10.1002/ajhb.21074 CrossRefGoogle Scholar
  87. Vianna ADS, Matos EP, Jesus IM, Asmus CIRF, Câmara VM (2019) Human exposure to mercury and its hematological effects: a systematic review. Cad Saude Publica 35(2):e00091618.  https://doi.org/10.1590/0102-311x00091618
  88. Vieira HC, Abreu SN, Morgado F, Soares AM (2013) Mercury accumulation in adolescents scalp hair and fish consumption: a case study comparing populations having natural or anthropogenic sources. E3S Web of Conferences 1:41038.  https://doi.org/10.1051/e3sconf/20130141038 CrossRefGoogle Scholar
  89. Vieira HC, Abreu SN, Morgado F, Soares AM (2015) Real and potential mercury accumulation in human scalp of adolescents: a case study. Biol Trace Elem Res 163(1–2):19–27.  https://doi.org/10.1007/s12011-014-0159-5 CrossRefGoogle Scholar
  90. Webb J, Mainville N, Mergler D, Lucotte M, Betancourt O, Davidson R, Cueva E, Quizhpe E (2004) Mercury in fish-eating communities of the Andean Amazon, Napo river valley, Ecuador. EcoHealth 1(2):SU59–SU71.  https://doi.org/10.1007/s10393-004-0063-0 CrossRefGoogle Scholar
  91. Weinhouse C, Ortiz EJ, Berky AJ, Bullins P, Hare-Grogg J, Rogers L, Morales AM, Hsu-Kim H, Pan WK (2017) Hair mercury level is associated with anemia and micronutrient status in children living near artisanal and small-scale gold mining in the Peruvian Amazon. Am J Trop Med Hyg 97(6):1886–1897.  https://doi.org/10.4269/ajtmh.17-0269 CrossRefGoogle Scholar
  92. WHO World Health Organization (2017) Mercury and health. Fact sheets 31 March 2017. https://www.who.int/news-room/fact-sheets/detail/mercury-and-health. Accessed 16 august 2019
  93. Xu H, Zhu Y, Wang L, Lin CJ, Jang C, Zhou Q, Yu B, Wang S, Xing J, Yu L (2019) Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China. Environ Pollut 250:1032–1043.  https://doi.org/10.1016/j.envpol.2019.04.008 CrossRefGoogle Scholar
  94. Yokoo EM, Valente JG, Grattan L, Schmidt SL, Platt I, Silbergeld EK (2003) Low level methylmercury exposure affects neuropsychological function in adults. Environ Health 2(1):8.  https://doi.org/10.1186/1476-069X-2-8
  95. Zabiński Z, Rutowski J, Moszczyński P, Dabrowski Z (2006) Red cell system and selected red cell enzymes in men occupationally exposed to mercury vapours. Przegl Lek 63:74–83.Google Scholar
  96. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20(2):351–360.  https://doi.org/10.1016/j.etap.2005.03.007 CrossRefGoogle Scholar
  97. Zhu Y, Wang Y, Meng F, Li L, Wu S, Mei X, Li H, Zhang G, Wu D (2018) Distribution of metal and metalloid elements in human scalp hair in Taiyuan, China. Ecotoxicol Environ Saf 148:538–545.  https://doi.org/10.1016/j.ecoenv.2017.10.073 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla CampusUniversity of CartagenaCartagenaColombia

Personalised recommendations