Advertisement

Anaerobic ammonia-oxidizing bacteria in tropical bioaugmented zero water exchange aquaculture ponds

  • Ramya Ramankutty Nair
  • Boobal Rangaswamy
  • Bright Singh Isaac Sarojini
  • Valsamma JosephEmail author
Research Article
  • 10 Downloads

Abstract

Bioaugmented zero water exchange aquaculture production systems (ZWEAPS) maintained with minimal or no water exchange prevent the ammonia accumulation in the system, leading to environmental sustainability and biosecurity. The microbes in the bioaugmented ZWEAPS plays a major role in maintaining low levels of ammonia through ammonia oxidation and nitrite oxidation. The comprehensive understanding on anammox population in the systems will provide an insight on the environmental factors controlling the functional anammox bacterial communities for potential biostimulation and augmented ammonia removal in ZWEAPS. The sediment metagenome of such three tropical bioaugmented ZWE shrimp culture ponds were analysed to determine the diversity, distribution and abundance of anaerobic ammonia-oxidizing (anammox) bacteria based on hydrazine oxidoreductase (hzo) gene as a phylogenetic marker. The restriction fragment length polymorphism (RFLP) phylotypes from the clone libraries were identified with maximum distribution to Candidatus Kuenenia, as the dominant population in the study sites with high ammonia load followed by Candidatus Scalindua. The environmental factors associated with the abundance and diversity of the anammox population were analysed using RDA and Pearson correlation. The samples of final culturing period (75th day) of TCR-S ZWE pond was observed with the highest operational taxonomic unit (OTU)–based diversity, where comparatively higher ammonia (water 0.71 mg L−1 and sediment 1.21 mg L−1) was recorded among the study sites. The gene abundance of the anammox population ranged from 106 to 107 copies per gram of sediment, in spite of less diversity. The physiochemical factors such as ammonia, nitrite, redox potential and the total organic carbon indicated a strong and positive correlation to the abundance and distribution of the anammox population, which highlights the importance of anammox communities and the potential of biostimulation for ammonia removal in the aquaculture systems.

Keywords

Zero water exchange aquaculture production system (ZWEAPS) Hydrazine oxidoreductase gene Anaerobic ammonia oxidation (Anammox) Bioremediation 

Notes

Funding information

The study is funded by the National Centre for Aquatic Animal Health (NCAAH), Cochin University of Science and Technology (CUSAT), India and University Grants Commission (UGC), India in the form Junior Research Fellowships (JRF) and Senior Research Fellowships (SRF) (ref. no. 20-12/2009(ii)E-IV).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2020_7663_MOESM1_ESM.docx (952 kb)
ESM 1 (DOCX 952 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  2. Amano T, Yoshinaga I, Okada K, Yamagishi T, Ueda S, Obuchi A, Sako Y, Suwa Y (2007) Detection of anammox activity and diversity of anammox bacteria-related 16S rRNA genes in coastal marine sediment in Japan. Microbes Environ 22:232–242.  https://doi.org/10.1264/jsme2.22.232 CrossRefGoogle Scholar
  3. Amano T, Yoshinaga I, Yamagishi T, Thuoc CV, Thu PT, Ueda S, Kato K, Sako Y, Suwa Y (2011) Contribution of anammox bacteria to benthic nitrogen cycling in a mangrove forest and shrimp ponds, Haiphong, Vietnam. Microbes Environ 26:1–6.  https://doi.org/10.1264/jsme2.ME10150 CrossRefGoogle Scholar
  4. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, D.CGoogle Scholar
  5. Bae H, Park KS, Chung YC, Jung JY (2010) Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR. Process Biochem 45:323–334.  https://doi.org/10.1016/j.procbio.2009.10.004 CrossRefGoogle Scholar
  6. Bendschneider K, Robinson RJ (1952) A new spectrophotometric method for the determination of nitrite in sea water. J Mar Res 11:87–96Google Scholar
  7. Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107:577–589.  https://doi.org/10.1021/cr050377t CrossRefGoogle Scholar
  8. Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC (2003) Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219:393–411.  https://doi.org/10.1016/S0044-8486(02)00575-6 CrossRefGoogle Scholar
  9. Chávez-Crooker P, Obreque-Contreras J (2010) Bioremediation of aquaculture wastes. Curr Opin Biotechnol 21:313–317.  https://doi.org/10.1016/j.copbio.2010.04.001 CrossRefGoogle Scholar
  10. Crab R, Avnimelech Y, Defoirdt T, Bossier P, Verstraete W (2007) Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270:1–14.  https://doi.org/10.1016/j.aquaculture.2007.05.006 CrossRefGoogle Scholar
  11. Dale OR, Tobias CR, Song B (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in cape fear river estuary. Environ Microbiol 11:1194–1207.  https://doi.org/10.1111/j.1462-2920.2008.01850.x CrossRefGoogle Scholar
  12. Dang H, Chen R, Wang L, Guo L, Chen P, Tang Z, Tian F, Li S, Klotz MG (2010) Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol 76:7036–7047.  https://doi.org/10.1128/AEM.01264-10 CrossRefGoogle Scholar
  13. Dang H, Zhou H, Zhang Z, Yu Z, Hua E, Liu X, Jiao N (2013) Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS One 8:e61330.  https://doi.org/10.1371/journal.pone.0061330 CrossRefGoogle Scholar
  14. Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR, Zehnder AJB (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207.  https://doi.org/10.1007/s002030100255 CrossRefGoogle Scholar
  15. Egli K, Bosshard F, Werlen C, Lais P, Siegrist H, Zehnder AJ, Van der Meer JR (2003) Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microb Ecol 45:419–432.  https://doi.org/10.1007/s00248-002-2037-5 CrossRefGoogle Scholar
  16. Foesel BU, Gieseke A, Schwermer C, Stief P, Koch L, Cytryn E, De La Torre JR, Van Rijn J, Minz D, Drake HL, Schramm A (2008) Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. FEMS Microbiol Ecol 63:192–204.  https://doi.org/10.1111/j.1574-6941.2007.00418.x CrossRefGoogle Scholar
  17. Grasshoff K, And KK, Ehrhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH Verlag GmbH, WeinheimCrossRefGoogle Scholar
  18. Haseeb M (2012) Development of zero water exchange shrimp culture system integrated with bioremediation of detritus and ammonia-nitrogen. Dissertation, Cochin University of Science and Technology. https://dyuthi.cusat.ac.in/xmlui/bitstream/handle/purl/3477/Dyuthi-T1427.pdf?sequence=1
  19. Hirsch MD, Long ZT, Song B (2011) Anammox bacterial diversity in various aquatic ecosystems based on the detection of hydrazine oxidase genes (hzoA/hzoB). Microb Ecol 61:264–276.  https://doi.org/10.1007/s00248-010-9743-1 CrossRefGoogle Scholar
  20. Hou L, Zheng Y, Liu M, Gong J, Zhang X, Yin G, You L (2013) Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze estuary. J Geophys Res Biogeosci 118:1237–1246.  https://doi.org/10.1002/jgrg.20108 CrossRefGoogle Scholar
  21. Hu B, Shen L, Liu S, Cai C, Chen T, Kartal B, Harhangi HR, Op den Camp HJM, Lou L, Xu X, Zheng P, Jetten MSM (2013) Enrichment of an anammox bacterial community from a flooded paddy soil. Environ Microbiol Rep 5:483–489.  https://doi.org/10.1111/1758-2229.12038 CrossRefGoogle Scholar
  22. Jetten MSM, Niftrik LV, Strous M, Kartal B, Keltjens JT, Op den Camp HJ (2009) Biochemistry and molecular biology of anammox bacteria biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44:65–84CrossRefGoogle Scholar
  23. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Mammalian Protein Metabolism. Elsevier, pp 21–132Google Scholar
  24. Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damsté JS, Jetten MSM, Strous M (2007) Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30:39–49.  https://doi.org/10.1016/j.syapm.2006.03.004 CrossRefGoogle Scholar
  25. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Damste JSS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611.  https://doi.org/10.1038/nature01526.1 CrossRefGoogle Scholar
  26. Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jorgensen BB, Jetten MSM (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci 102:6478–6483.  https://doi.org/10.1073/pnas.0502088102 CrossRefGoogle Scholar
  27. Lahav O, Massada IB, Yackoubov D, Zelikson R, Mozes N, Tal Y, Tarre S (2009) Quantification of anammox activity in a denitrification reactor for a recirculating aquaculture system. Aquaculture 288:76–82.  https://doi.org/10.1016/j.aquaculture.2008.11.020 CrossRefGoogle Scholar
  28. Lam P, Kuypers MMM (2011) Microbial nitrogen cycling processes in oxygen minimum zones. Annu Rev Mar Sci 3:317–345.  https://doi.org/10.1146/annurev-marine-120709-142814 CrossRefGoogle Scholar
  29. Lam P, Jensen MM, Lavik G, McGinnis DF, Müller B, Schubert CJ, Amann R, Thamdrup B, Kuypers MMM (2007) Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci 104:7104–7109.  https://doi.org/10.1073/pnas.0611081104 CrossRefGoogle Scholar
  30. Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Rudolf Amann R, Jetten MSM, Kuypers MMM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci 106:4752–4757.  https://doi.org/10.1073/pnas.0812444106 CrossRefGoogle Scholar
  31. Li M, Gu JD (2013) Community structure and transcript responses of anammox bacteria, AOA, and AOB in mangrove sediment microcosms amended with ammonium and nitrite. Appl Microbiol Biotechnol 97:9859–9874.  https://doi.org/10.1007/s00253-012-4683-y CrossRefGoogle Scholar
  32. Li M, Gu JD (2016) The diversity and distribution of anammox bacteria in the marine aquaculture zones. Appl Microbiol Biotechnol 100:8943–8953.  https://doi.org/10.1007/s00253-016-7690-6 CrossRefGoogle Scholar
  33. Li H, Chen S, Mu BZ, Gu JD (2010a) Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs. Microb Ecol 60:771–783.  https://doi.org/10.1007/s00248-010-9733-3 CrossRefGoogle Scholar
  34. Li M, Hong Y, Klotz MG, Gu JD (2010b) A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium-oxidizing bacteria in marine sediments. Appl Microbiol Biotechnol 86:781–790.  https://doi.org/10.1007/s00253-009-2361-5 CrossRefGoogle Scholar
  35. Li M, Cao H, Hong YG, Gu JD (2011a) Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po nature reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes Environ 26:15–22.  https://doi.org/10.1264/jsme2.ME10131 CrossRefGoogle Scholar
  36. Li M, Ford T, Li X, Gu JD (2011b) Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (anammox) bacteria. Environ Sci Technol 45:3547–3553.  https://doi.org/10.1021/es103826w CrossRefGoogle Scholar
  37. Li M, Hong YG, Cao HL, Gu JD (2011c) Mangrove trees affect the community structure and distribution of anammox bacteria at an anthropogenic-polluted mangrove in the Pearl River Delta reflected by 16S rRNA and hydrazine oxidoreductase (HZO) encoding gene analyses. Ecotoxicology 20:1780–1790.  https://doi.org/10.1007/s10646-011-0711-4 CrossRefGoogle Scholar
  38. Lu S, Liao M, Xie C, He X, Li D, He L, Chen J (2015) Seasonal dynamics of ammonia-oxidizing microorganisms in freshwater aquaculture ponds. Ann Microbiol 65:651–657.  https://doi.org/10.1007/s13213-014-0903-2 CrossRefGoogle Scholar
  39. Mcclain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the Interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312.  https://doi.org/10.1007/s10021-003-0161-9 CrossRefGoogle Scholar
  40. McLean EO (1982) Soil pH and lime requirement. In: Page AL (ed) Methods of soil analysis, part 2, American Soc. Agronomy, MadisonGoogle Scholar
  41. Menasveta P (2002) Improved shrimp growout systems for disease prevention and environmental sustainability in Asia. Rev Fish Sci 10:391–402.  https://doi.org/10.1080/20026491051703 CrossRefGoogle Scholar
  42. Moore TA, Xing Y, Lazenby B, Lynch MDJ, Schiff S, Robertson WD, Timlin R, Lanza S, Ryan MC, Aravena R, Fortin D, Clark ID, Neufeld JD (2011) Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater. Environ Sci Technol 45:7217–7225.  https://doi.org/10.1021/es201243t CrossRefGoogle Scholar
  43. Mulder A, Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184.  https://doi.org/10.1111/j.1574-6941.1995.tb00281.x CrossRefGoogle Scholar
  44. Nair RR, Boobal R, Vrinda S, Bright Singh IS, Valsamma J (2019) Ammonia-oxidizing bacterial and archaeal communities in tropical bioaugmented zero water exchange shrimp production systems. J Soils Sediments 19:2126–2142.  https://doi.org/10.1007/s11368-018-2185-y CrossRefGoogle Scholar
  45. Nakajima J, Sakka M, Kimura T, Furukawa K, Sakka K (2008) Enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor. Appl Microbiol Biotechnol 77:1159–1166.  https://doi.org/10.1007/s00253-007-1247-7 CrossRefGoogle Scholar
  46. Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832.  https://doi.org/10.1128/AEM.01254-06 CrossRefGoogle Scholar
  47. Pruder GD (2004) Biosecurity: application in aquaculture. Aquac Eng 32:3–10.  https://doi.org/10.1016/j.aquaeng.2004.05.002 CrossRefGoogle Scholar
  48. Qian G, Wang J, Kan J, Zhang X, Xia Z, Zhang X, Miao Y, Sun J (2018) Diversity and distribution of anammox bacteria in water column and sediments of the eastern Indian Ocean. Int Biodeterior Biodegradation 133:52–62.  https://doi.org/10.1016/j.ibiod.2018.05.015 CrossRefGoogle Scholar
  49. Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139.  https://doi.org/10.1111/j.1462-2920.2008.01642.x CrossRefGoogle Scholar
  50. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  51. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefGoogle Scholar
  52. Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten MSM, Metzger JW, Schleifer KH, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106.  https://doi.org/10.1016/S0723-2020(00)80050-8 CrossRefGoogle Scholar
  53. Schmid MC, Maas B, Dapena A, Van De Pas SK, Van De Vossenberg J, Kartal B, Van Niftrik L, Schmidt I, Cirpus I, Kuenen JG, Wagner M, Sinninghe Damsté JS, Kuypers M, Revsbech NP, Mendez R, Jetten MSM, Strous M (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71:1677–1684.  https://doi.org/10.1128/AEM.71.4.1677-1684.2005 CrossRefGoogle Scholar
  54. Shen L, Liu S, Lou L, Liu W, Xu X, Zheng P, Hu B (2013) Broad distribution of diverse anaerobic ammonium-oxidizing bacteria in Chinese agricultural soils. Appl Environ Microbiol 79:6167–6172.  https://doi.org/10.1128/AEM.00884-13 CrossRefGoogle Scholar
  55. Shen L, Wu H, Gao Z, Ruan Y, Xu X, Li J, Ma S, Zheng P (2016a) Evidence for anaerobic ammonium oxidation process in freshwater sediments of aquaculture ponds. Environ Sci Pollut Res 23:1344–1352.  https://doi.org/10.1007/s11356-015-5356-z CrossRefGoogle Scholar
  56. Shen L, Wu H, Gao Z, Cheng H, Li J, Liu X, Ren Q (2016b) Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils. Appl Microbiol Biotechnol 100:3291–3300.  https://doi.org/10.1007/s00253-015-7191-z CrossRefGoogle Scholar
  57. Solorzano L (1969) Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol Oceanogr 14:799–801.  https://doi.org/10.4319/lo.1969.14.5.0799 CrossRefGoogle Scholar
  58. Strickland JDH, Parsons TR (1972) A practical handbook of sea water analysis. 2nd Edn. Fisheries Research Board of Canada, Canada, Pages: 310 Bulletin of Fisheries Research Board of CanadaGoogle Scholar
  59. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794.  https://doi.org/10.1038/nature04647 CrossRefGoogle Scholar
  60. Tal Y, Watts JEM, Schreier SB, Sowers KR, Schreier HJ (2003) Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system. Aquaculture 215:187–202.  https://doi.org/10.1016/S0044-8486(02)00372-1 CrossRefGoogle Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefGoogle Scholar
  62. Thakur DP, Lin CK (2003) Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquac Eng 27:159–176.  https://doi.org/10.1016/S0144-8609(02)00055-9 CrossRefGoogle Scholar
  63. Valsamma J, Haseeb M, Ranjit S, Anas A, Bright Singh IS (2014) Shrimp production under zero water exchange mode coupled with bioremediation and application of probiotics. J Fish Int 9:5–14. http://docsdrive.com/pdfs/medwelljournals/jfish/2014/5-14.pdf Google Scholar
  64. van de Graaf AA, Mulder A, de Bruijn P, Jetten MSM, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251CrossRefGoogle Scholar
  65. van de Vossenberg J, Woebken D, Maalcke WJ, Wessels HJCT, Dutilh BE, Kartal B, Janssen Megens EM, Roeselers G, Yan J, Speth D, Gloerich J, Wim G, van der Biezen E, Pluk W, Francoijs KJ, Russ L, Lam P, Malfatti SA, Tringe SG, Haaijer SCM, Op den Camp HJM, Stunnenberg HG, Amann R, Kuypers MMM, Jetten MSM (2013) The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 15:1275–1289.  https://doi.org/10.1111/j.1462-2920.2012.02774.x CrossRefGoogle Scholar
  66. van der Star WRL, Miclea AI, van Dongen UGJM, Muyzer G, Picioreanu C, van Loosdrecht MCM (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294.  https://doi.org/10.1002/bit.21891 CrossRefGoogle Scholar
  67. van Kessel MAHJ, Harhangi HR, van de Pas-Schoonen K, van de Vossenberg J, Flik G, Jetten MSM, Klaren PHM, Op den Camp HJM (2010) Biodiversity of N-cycle bacteria in nitrogen removing moving bed biofilters for freshwater recirculating aquaculture systems. Aquaculture 306:177–184.  https://doi.org/10.1016/j.aquaculture.2010.05.019 CrossRefGoogle Scholar
  68. van Kessel MAHJ, Harhangi HR, Flik G, Jetten MSM, Klaren PHM, Op den Camp HJM (2011) Anammox bacteria in different compartments of recirculating aquaculture systems. Biochem Soc Trans 39:1817–1821.  https://doi.org/10.1042/BST20110743 CrossRefGoogle Scholar
  69. Wagner M, Amann R, Kämpfer P, Assmus B, Hartmann A, Hutzler P, Springer N, Schleifer KH (1994) Identification and in situ detection of gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol 17:405–417.  https://doi.org/10.1016/S0723-2020(11)80058-5 CrossRefGoogle Scholar
  70. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  71. Wang J, Gu JD (2013) Dominance of Candidatus Scalindua species in anammox community revealed in soils with different duration of rice paddy cultivation in Northeast China. Appl Microbiol Biotechnol 97:1785–1798.  https://doi.org/10.1007/s00253-012-4036-x CrossRefGoogle Scholar
  72. Wang YB, Xu ZR, Xia MS (2005) The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fish Sci 71:1036–1041.  https://doi.org/10.1111/j.1444-2906.2005.01061.x CrossRefGoogle Scholar
  73. Wang YF, Feng YY, Ma X, Gu JD (2013) Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Appl Microbiol Biotechnol 97:7919–7934.  https://doi.org/10.1007/s00253-012-4510-5 CrossRefGoogle Scholar
  74. Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, Jetten MSM, Fuchs BM, Amann R (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119.  https://doi.org/10.1111/j.1462-2920.2008.01640.x CrossRefGoogle Scholar
  75. Wu Y, Xiang Y, Wang J, Wu QL (2012) Molecular detection of novel anammox bacterial clusters in the sediments of the shallow freshwater lake Taihu. Geomicrobiol J 29:852–859.  https://doi.org/10.1080/01490451.2011.635760 CrossRefGoogle Scholar
  76. Wu J, Hong Y, Ye J, Li Y, Liu X, Jiao L, Li T, Li Y, Bin L, Wang Y (2019) Diversity of anammox bacteria and contribution to the nitrogen loss in surface sediment. Int Biodeterior Biodegradation 142:227–234.  https://doi.org/10.1016/j.ibiod.2019.05.018 CrossRefGoogle Scholar
  77. Yuvaraj D, Karthik R (2015) Efficacy of probiotics on Litopenaeus vannamei culture through zero water exchange system. J Fish Aquat Sci 10:445–463.  https://doi.org/10.3923/jfas.2015.445.463 CrossRefGoogle Scholar
  78. Zhang Y, Ruan X, Wan Y, Li X (2016) Effects of environmental factors on anammox bacterial community structure in sediments of a freshwater aquaculture farm, Yangcheng Lake. Geomicrobiol J 33:479–487.  https://doi.org/10.1080/01490451.2015.1054005 CrossRefGoogle Scholar
  79. Zhu G, Wang S, Wang W, Wang Y, Zhou L, Jiang B, Op Den Camp HJM, Risgaard-Petersen N, Schwark L, Peng Y, Hefting M, Jetten MSM, Yin C (2013) Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci 6:103–107.  https://doi.org/10.1038/ngeo1683 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.National Centre for Aquatic Animal HealthCochin University of Science and TechnologyKochiIndia

Personalised recommendations