Severe air pollution and characteristics of light-absorbing particles in a typical rural area of the Indo-Gangetic Plain

  • Pengfei Chen
  • Shichang KangEmail author
  • Lekhendra Tripathee
  • Arnico K. Panday
  • Maheswar Rupakheti
  • Dipesh Rupakheti
  • Qianggong Zhang
  • Junming Guo
  • Chaoliu Li
  • Tao Pu
Research Article


Total suspended particles (TSP) were collected in Lumbini from April 2013 to March 2016 to better understand the characteristics of carbonaceous aerosol (CA) concentrations, compositions and sources and their light absorption properties in rural region of severe polluted Indo-Gangetic Plain (IGP). Extremely high TSP (203.9 ± 109.6 μg m−3), organic carbon (OC 32.1 ± 21.7 μg m−3), elemental carbon (EC 6.44 ± 3.17 μg m−3) concentrations were observed in Lumbini particularly during winter and post-monsoon seasons, reflecting the combined influences of emission sources and weather conditions. SO42− (7.34 ± 4.39 μg m−3) and Ca2+ (5.46 ± 5.20 μg m−3) were the most dominant anion and cation in TSP. These components were comparable to those observed in urban areas in South and East Asia but significantly higher than those in remote regions over the Himalayas and Tibetan Plateau, suggesting severe air pollution in the study region. Various combustion activities including industry, vehicle emission, and biomass burning are the main reasons for high pollutant concentrations. The variation of OC/EC ratio further suggested that biomass such as agro-residue burning contributed a lot for CA, particularly during the non-monsoon season. The average mass absorption cross-section of EC (MACEC) and water-soluble organic carbon (MACWSOC) were 7.58 ± 3.39 and 1.52 ± 0.41 m2 g−1, respectively, indicating that CA in Lumbini was mainly affected by local emissions. Increased biomass burning decreased MACEC; whereas, it could result in high MACWSOC during the non-monsoon season. Furthermore, dust is one important factor causing higher MACWSOC during the pre-monsoon season.


Air pollution Organic carbon Elemental carbon Light absorption Lumbini Indo-Gangetic Plain 



Lekhendra Tripathee acknowledges the Chinese Academy of Science for international Young staff support under the PIFI (2020FYC0001) program. The authors acknowledge the support provided by staffs at the Lumbini sampling site.

Funding information

This study was supported by the National Natural Science Foundation of China (41705132, 41630754), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0605), Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE) (XDA20040501), the CAS “Light of West China” program, and State Key Laboratory of Cryospheric Science (SKLCS-OP-2018-01). This study is part of a framework across the HTP: Atmospheric Pollution and Cryospheric Changes (APCC).

Supplementary material

11356_2020_7618_MOESM1_ESM.docx (169 kb)
ESM 1 (DOCX 169 kb)


  1. Alexander DT, Crozier PA, Anderson JR (2008) Brown carbon spheres in East Asian outflow and their optical properties. Science 321:833–836CrossRefGoogle Scholar
  2. Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148CrossRefGoogle Scholar
  3. Andreae MO, Rosenfeld D (2008) Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci Rev 89:13–41CrossRefGoogle Scholar
  4. Bahadur R, Praveen PS, Xu YY, Ramanathan V (2012) Solar absorption by elemental and brown carbon determined from spectral observations. Proc Natl Acad Sci U S A 109:17336–17371CrossRefGoogle Scholar
  5. Begam GR, Vachaspati CV, Ahammed YN, Kumar KR, Reddy RR, Sharma SK, Saxena M, Mandal TK (2017) Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India). Environ Sci Pollut Res 24:1719–1734CrossRefGoogle Scholar
  6. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Karcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Kopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552CrossRefGoogle Scholar
  7. Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40:27–67CrossRefGoogle Scholar
  8. Bosch C, Andersson A, Kirillova EN, Budhavant K, Tiwari S, Praveen PS, Russell LM, Beres ND, Ramanathan V, Gustafsson Ö (2014) Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean. J Geophys Res Atmos 119:11743–11759CrossRefGoogle Scholar
  9. Bozzetti C, El Haddad I, Salameh D, Daellenbach KR, Fermo P, Gonzalez R, Minguillón MC, Iinuma Y, Poulain L, Elser M, Müller E, Slowik JG, Jaffrezo JL, Baltensperger U, Marchand N, Prévôt ASH (2017) Organic aerosol source apportionment by offline-AMS over a full year in Marseille. Atmos Chem Phys 17(13):8247–8268CrossRefGoogle Scholar
  10. Carrico CM, Bergin MH, Shrestha AB, Dibb JE, Gomes L, Harris JM (2003) The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmos Environ 37:2811–2824CrossRefGoogle Scholar
  11. Chelani A, Gajghate D, ChalapatiRao C, Devotta S (2010) Particle size distribution in ambient air of Delhi and its statistical analysis. Bull Environ Contam Toxicol 85:22–27CrossRefGoogle Scholar
  12. Chen B, Bond TC (2010) Light absorption by organic carbon from wood combustion. Atmos Chem Phys 10:1773–1787CrossRefGoogle Scholar
  13. Chen P, Kang S, Gul C, Tripathee L, Wang X, Hu Z, Li C, Pu T (2020) Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan. Journal of Environmental Sciences 90:286–296CrossRefGoogle Scholar
  14. Cheng Y, He KB, Zheng M, Duan FK, Du ZY, Ma YL, Tan JH, Yang FM, Liu JM, Zhang XL, Weber RJ, Bergin MH, Russell AG (2011) Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos Chem Phys 11:11497–11510CrossRefGoogle Scholar
  15. Cheng Y, He KB, Engling G, Weber RJ, Liu JM, Du ZY, Dong SP (2017) Brown and black carbon in Beijing aerosol: implications for the effects of brown coating on light absorption by black carbon. Sci Total Environ 599:1047–1055CrossRefGoogle Scholar
  16. Chen PF, Kang SC, Li CL, Zhang QG, Guo JM, Lekhendra T, Zhang YL, Li G, Gul C, Cong ZY, Wan X, Niu HW, Panday AK, Rupakheti M, Ji ZM (2019) Carbonaceous aerosol characteristics on the Third Pole: a primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environ Pollut 253:49–60CrossRefGoogle Scholar
  17. Chen PF, Li CL, Kang SC, Yan FP, Zhang QG, Ji ZM, Tripathee L, Rupakheti D, Rupakheti M, Qu B, Sillanpää M (2016) Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model. Atmos Res 182:46–53CrossRefGoogle Scholar
  18. Chen PF, Li CL, Kang SC, Rupakheti M, Panday AK, Yan FP, Li QL, Zhang QG, Guo JM, Ji ZM, Rupakheti D, Luo W (2017) Characteristics of particulate-phase polycyclic aromatic hydrocarbons (PAHs) in the atmosphere over the central Himalayas. Aerosol Air Qual Res 17:2942–2954CrossRefGoogle Scholar
  19. Choudhary V, Rajput P, Singh DK, Singh AK, Gupta T (2018) Light absorption characteristics of brown carbon during foggy and non-foggy episodes over the Indo-Gangetic Plain. Atmos Pollut Res 9:494–501CrossRefGoogle Scholar
  20. Chow JC, Watson JG, Chen LWA, Chang MCO, Robinson NF, Trimble D, Kohl S (2007) The IMPROVE-A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manage Assoc 57:1014–1023CrossRefGoogle Scholar
  21. Chung CE, Ramanathan V, Decremera D (2012) Observationally constrained estimates of carbonaecous aerosol radiative forcing. PNAS U S A 109:11624–11629CrossRefGoogle Scholar
  22. Cong ZY, Gao SP, Zhao WC, Wang X, Wu GM, Zhang YL, Kang SC, Liu YQ, Ji JF (2018) Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications. Cryosphere 12:3177–3186CrossRefGoogle Scholar
  23. Cong ZY, Kang SC, Kawamura K, Liu B, Wan X, Wang ZY, Gao SP, Fu PQ (2015) Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmos Chem Phys 14:25051–25082CrossRefGoogle Scholar
  24. Cozic J, Verheggen B, Weingartner E, Crosier J, Bower KN, Flynn M, Coe H, Henning S, Steinbacher M, Henne S, Coen MC, Petzold A, Baltensperger U (2008) Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos Chem Phys 8:407–423CrossRefGoogle Scholar
  25. Cuccia E, Massabò D, Ariola V, Bove MC, Fermo P, Piazzalunga A, Prati P (2013) Size-resolved comprehensive characterization of airborne particulate matter. Atmos Environ 67:14–26CrossRefGoogle Scholar
  26. Decesari S, Facchini MC, Carbone C, Giulianelli L, Rinaldi M, Finessi E, Fuzzi S, Marinoni A, Cristofanelli P, Duchi R, Bonasoni P, Vuillermoz E, Cozic J, Jaffrezo JL, Laj P (2010) Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.). Atmos Chem Phys 10:4583–4596CrossRefGoogle Scholar
  27. Dong ZW, Qin DH, Li KM, Kang SC, Wei T, Lu JF (2019) Spatial variability, mixing states and composition of various haze particles in atmosphere during winter and summertime in northwest China. Environ Pollut 246:79–88CrossRefGoogle Scholar
  28. Du ZY, He KB, Cheng Y, Duan FK, Ma YL, Liu JM, Zhang XL, Zheng M, Weber R (2014) A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmos Environ 89:235–241CrossRefGoogle Scholar
  29. Feng Y, Ramanathan V, Kotamarthi VR (2013) Brown carbon: a significant atmospheric absorber of solar radiative? Atmos Chem Phys 13:8607–8621CrossRefGoogle Scholar
  30. Fermo P, Piazzalunga A, Vecchi R, Valli G, Ceriani M (2006) A TGA/FT-IR study for measuring OC and EC in aerosol samples. Atmos Chem Phys 6(1):255–266CrossRefGoogle Scholar
  31. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, Burnett R, Casey D, Coates MM, Cohen A (2015) Global, regional, and national comparative risk assessment of 79 behavioral, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease study 2013. Lancet 386:2287–2323CrossRefGoogle Scholar
  32. Forrister H, Liu J, Scheuer E, Dibb J, Ziemba L, Thornhill KL, Anderson B, Diskin G, Perring AE, Schwarz JP, Campuzano-Jost P, Day DA, Palm BB, Jimenez JL, Nenes A, Weber RJ (2015) Evolution of brown carbon in wildfire plumes. Geophys Res Lett 42:4623–4630CrossRefGoogle Scholar
  33. Gustafsson Ö, Krusa M, Zencak Z, Sheesley RJ, Granat L, Engstrom E, Praveen PS, Rao PSP, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323:495–498CrossRefGoogle Scholar
  34. Gustafsson Ö, Ramanathan V (2016) Convergence on climate warming by black carbon aerosols. PNAS U S A 113:4243–4245CrossRefGoogle Scholar
  35. Hegde P, Kawamura K (2017) Chemical constituents of carbonaceous and nitrogen aerosols over Thumba region, Trivandrum, India. Arch Environ Contam Toxicol 73:456–473CrossRefGoogle Scholar
  36. Hodnebrog O, Myhre G, Samset BH (2014) How shorter black carbon lifetime alters its climate effect. Nat Commun 5:5065CrossRefGoogle Scholar
  37. Hu ZF, Kang SC, Li CL, Yan FP, Chen PF, Gao SP, Wang ZY, Zhang YL, Sillanpää M (2017) Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau. Environ Sci Pollut Res 24:15369–15378CrossRefGoogle Scholar
  38. Jacobson M (2004) Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity. J Geophys Res Atmos 109:D21201CrossRefGoogle Scholar
  39. Jeong CH, Hopke PK, Kim E, Lee DW (2004) The comparison between thermal-optical transmittance elemental carbon and aethalometer black carbon measured at multiple monitoring sites. Atmos Environ 38:5193–5204CrossRefGoogle Scholar
  40. Ji ZM (2016) Modeling black carbon and its potential radiative effects over the Tibetan Plateau. Adv Clim Chang Res 7:139–144CrossRefGoogle Scholar
  41. Ji ZM, Kang SC, Cong ZY, Zhang QG, Yao TD (2015) Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Clim Dyn 45:2831–2846CrossRefGoogle Scholar
  42. Ji ZM, Kang SC, Zhang DF, Zhu CZ, Wu J, Xu Y (2011) Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Clim Dyn 36:1633–1647CrossRefGoogle Scholar
  43. Kang SC, Zhang QG, Qian Y, Ji ZM, Li CL, Cong ZY, Zhang YL, Guo JM, Du WT, Huang J, You QL, Panday AK, Rupakheti M, Chen DL, Gustafsson Ö, Thiemens MH, Qin DH (2019) Linking atmospheric pollution to cryospheric change in the Third Pole Region: current progresses and future prospects. Natl Sci Rev 6:796–809CrossRefGoogle Scholar
  44. Kirillova EN, Andersson A, Han J, Lee M, Gustafsson Ö (2014a) Sources and light absorption properties of water-soluble and insoluble organic aerosols in the outflow from northern China. Atmos Chem Phys 14:1413–1422CrossRefGoogle Scholar
  45. Kirillova EN, Andersson A, Tiwari S, Srivastava AK, Bisht DS, Gustafsson Ö (2014b) Water-soluble organic carbon aerosols during a full New Delhi winter: isotope-based source apportionment and optical properties. J Geophys Res Atmos 119:3476–3485CrossRefGoogle Scholar
  46. Kirillova EN, Marinoni A, Bonasoni P, Vuillermoz E, Facchini MC, Fuzzi S, Decesari S (2016) Light absorption properties of brown carbon in the high Himalayas. J Geophys Res Atmos 121:9621–9639CrossRefGoogle Scholar
  47. Kunwar B, Kawamura K (2014) One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asia dusts. Atmos Chem Phys 14:1819–1836CrossRefGoogle Scholar
  48. Kumar P, Yadav S (2016) Seasonal variations in water soluble inorganic ions, OC and EC in PM10 and PM>10 aerosols over Delhi: influence of sources and meteorological factors. Aerosol Air Qual Res 16:1165–1178CrossRefGoogle Scholar
  49. Lambe AT, Cappa CD, Massoli P, Onasch TB, Forestieri SD, Martin AT, Cummings MJ, Croasdale DR, Brune WH, Worsnop DR, Davidovits P (2013) Relationship between oxidation level and optical properties of secondary organic aerosol. Environ Sci Technol 47:6349–6357CrossRefGoogle Scholar
  50. Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10:11017–11096CrossRefGoogle Scholar
  51. Lelieveld J, Evans JS, Fanis M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371CrossRefGoogle Scholar
  52. Li CL, Bosch C, Kang SC, Andersson A, Chen PF, Zhang QG, Cong ZY, Chen B, Qin DH, Gustafsson Ö (2016a) Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat Commun 7:12574CrossRefGoogle Scholar
  53. Li CL, Chen PF, Kang SC, Yan FP, Hu ZF, Qu B, Sillanpää M (2016b) Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau. Atmos Environ 1127:340–346CrossRefGoogle Scholar
  54. Li CL, Yan FP, Kang SC, Chen PF, Hu ZF, Gao SP, Qu B, Sillanpää M (2016c) Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China. Atmos Environ 143:79–85CrossRefGoogle Scholar
  55. Mishra SK, Tripathi SN (2008) Modeling optical properties of mineral dust over the Indian Desert. J Geophys Res 113:D23201CrossRefGoogle Scholar
  56. Moffet RC, Prather KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS USA 106:11872–11877CrossRefGoogle Scholar
  57. Offenberg JH, Lewandowski M, Jaoui M, Kleindienst TE (2011) Contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol during 2006 in research Triangle Park, NC. Aerosol Air Qual Res 11:99–108CrossRefGoogle Scholar
  58. Pant P, Shukla A, Kohl SD, Chow JC, Watson JG, Harrison RM (2015) Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmos Environ 109:178–189CrossRefGoogle Scholar
  59. Peng JF, Hu M, Guo S, Du ZF, Zheng J, Shang DJ, Zamora ML, Zeng L, Shao M, Wu M, Zheng YS, Wang J, Glen Y, Collins CR, Molina DR, Zhang MJ, R.Y. (2016) Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. PNAS U S A 113:4266–4271CrossRefGoogle Scholar
  60. Piazzalunga A, Anzano M, Collina E, Lasagni M, Lollobrigida F, Pannocchia A, Fermo P, Pitea D (2013) Contribution of wood combustion to PAH and PCDD/F concentrations in two urban sites in Northern Italy. J Aerosol Sci 56:30–40CrossRefGoogle Scholar
  61. Rajput P, Sarin MM, Rengarajan R, Singh D (2011) Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmos Environ 45:6732–6740CrossRefGoogle Scholar
  62. Ramana MV, Ramanathan V, Feng Y, Yoon SC, Kim SW, Carmichael GR, Schauer JJ (2010) Warming influenced by ratio of black carbon to sulphate and the black-carbon source. Nat Geosci 3:542–545CrossRefGoogle Scholar
  63. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227CrossRefGoogle Scholar
  64. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. PNAS U S A 102:5326–5333CrossRefGoogle Scholar
  65. Ramanathan V, Li F, Ramana M, Praveen P, Kim D, Corrigan C, Nguyen H, Stone EA, Schauer JJ, Carmichael G (2007) Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res 112:1–26CrossRefGoogle Scholar
  66. Ram K, Sarin MM (2009) Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environ Sci Technol 43:8233–8239CrossRefGoogle Scholar
  67. Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41:88–98CrossRefGoogle Scholar
  68. Ram K, Sarin MM (2015) Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and central Himalayas: impact of anthropogenic sources. J Environ Manag 148:153–163CrossRefGoogle Scholar
  69. Ram K, Sarin MM, Hegde P (2010a) Long-term record of aerosol optical properties and chemical composition from a high-altitude site (Manora Peak) in central Himalaya. Atmos Chem Phys 10:11791–11803CrossRefGoogle Scholar
  70. Ram K, Sarin MM, Tripathi SN (2010b) Inter-comparison of thermal and optical methods for determination of atmospheric black carbon and attenuation coefficient from an urban location in Northern India. Atmos Res 97:335–342CrossRefGoogle Scholar
  71. Ram K, Sarin MM, Tripathi SN (2012) Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. Environ Sci Technol 46:686–695CrossRefGoogle Scholar
  72. Rap A, Scott CE, Spracklen DV, Bellouin N, Forster PM, Carslaw KS, Schmidt A, Mann G (2013) Natural aerosol direct and indirect radiative effects. Geophys Res Lett 40:3297–3301CrossRefGoogle Scholar
  73. Rupakheti D, Adhikary B, Praveen PS, Rupakheti M, Kang SC, Mahata KS, Naja M, Zhang QG, Panday AK, Lawrence MG (2017) Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills. Atmos Chem Phys 17:11041–11063CrossRefGoogle Scholar
  74. Rupakheti D, Kang SC, Rupakheti M, Cong ZY, Tripathee L, Panday AK, Holben BN (2018) Observation of optical properties and sources of aerosols at Buddha’s birthplace, Lumbini, Nepal: environmental implications. Environ Sci Pollut Res 25:14868–14881CrossRefGoogle Scholar
  75. Rupakheti D, Kang S, Rupakheti M, Cong Z, Panday AK, Holben BN (2019) Identification of absorbing aerosol types at a site in the northern edge of Indo-Gangetic Plain and a polluted valley in the foothills of the central Himalayas. Atmos Res 223:15–23CrossRefGoogle Scholar
  76. Saleh R, Hennigan CJ, McMeeking GR, Chuang WK, Robinson ES, Coe H, Donahue NM, Robinson AL (2013) Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos Chem Phys 13:7683–7693CrossRefGoogle Scholar
  77. Saleh R, Robinson ES, Tkacik DS, Ahern AT, Liu S, Aiken AC, Sullivan RC, Presto AA, Dubey MK, Yokelson RJ, Donahue NM, Robinson AL (2014) Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nat Geosci 7:647CrossRefGoogle Scholar
  78. Satsangi A, Pachauri T, Singla V, Lakhani A, Kumari KM (2013) Water soluble ionic species in atmospheric aerosols: concentrations and sources at Agra in the Indo-Gangetic Plain (IGP). Aerosol Air Qual Res 13:1877–1889CrossRefGoogle Scholar
  79. Shahid I, Kistler M, Mukhtar A, Ghauri BM, Cruz CR, Bauer H et al (2016) Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi-Pakistan. Atmos Environ 128:114–123CrossRefGoogle Scholar
  80. Shakya KM, Ziemba LD, Griffin RJ (2010) Characteristics and sources of carbonaceous, ionic, and isotopic species of wintertime atmospheric aerosols in Kathmandu Valley, Nepal. Aerosol Air Qual Res 10:219–230CrossRefGoogle Scholar
  81. Sharma SK, Mandal TK, Saxena M, Sharma RA, Datta A, Saud T (2014) Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India. J Atmos Sol-Terr Phy 113:10–22CrossRefGoogle Scholar
  82. Singh A, Rajput P, Sharma D, Sarin MM, Singh D (2014) Black carbon and elemental carbon from postharvest agricultural-waste burning emissions in the Indo-Gangetic Plain. Adv Meteorol 2014(179301):10Google Scholar
  83. Snyder DC, Schauer JJ (2007) An inter-comparison of two black carbon aerosol instruments and a semi-continuous elemental carbon instrument in the urban environment. Aerosol Sci Technol 41:463–474CrossRefGoogle Scholar
  84. Srinivas B, Rastogi N, Sarin MM, Singh A, Singh D (2016) Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain. Atmos Environ 125:360–370CrossRefGoogle Scholar
  85. Srinivas B, Sarin MM (2013) Light-absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions. Environ Res Lett 8:044042CrossRefGoogle Scholar
  86. Stone EA, Schauer JJ, Pradhan BB, Dangol PM, Habib G, Venkataraman C, Ramanathan V (2010) Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. J Geophys Res Atmos 115:D06301Google Scholar
  87. Sun HL, Biedermann L, Bond TC (2007) Color of brown carbon: a model for ultraviolet and visible light absorption by organic carbon aerosol. Geophys Res Lett 34:L17813CrossRefGoogle Scholar
  88. Tripathee L, Kang SC, Rupakheti D, Cong ZY, Zhang QG, Huang J (2017) Chemical characteristics of soluble aerosols over the central Himalayas: insights into spatiotemporal variations and sources. Environ Sci Pollut Res 24:24454–24472CrossRefGoogle Scholar
  89. Tripathee L, Kang SC, Rupakheti D, Zhang QG, Huang J, Sillanpaa M (2016) Water-soluble ionic composition of aerosols at urban location in the foothills of Himalaya, Pokhara Valley, Nepal. Atmosphere 7:102CrossRefGoogle Scholar
  90. Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610CrossRefGoogle Scholar
  91. Vassura I, Venturini E, Marchetti S, Piazzalunga A, Bernardi E, Fermo P, Passarini F (2014) Markers and influence of open biomass burning on atmospheric particulate size and composition during a major bonfire event. Atmos Environ 82:218–225CrossRefGoogle Scholar
  92. Vecchi R, Bernardoni V, Fermo P, Lucarelli F, Mazzei F, Nava S, Prati P, Piazzalunga A, Valli G (2009) 4-hours resolution data to study PM10 in a "hot spot" area in Europe. Environ Monit Assess 154(1–4):283–300CrossRefGoogle Scholar
  93. Wang Y, Zhuang G, Sun Y, An Z (2006) The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos Environ 40:6579–6591CrossRefGoogle Scholar
  94. Wan X, Kang SC, Xin JY, Liu B, Wen TX, Wang PL, Wang YS, Cong ZY (2016) Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmos Res 174:142–150CrossRefGoogle Scholar
  95. Wan X, Kang SC, Li QL, Rupakheti D, Zhang QG, Guo JM, Chen PF, Tripathee L, Rupakheti M, Panday AK, Wang W, Kawamura K, Gao SP, Wu GM, Cong ZY (2017) Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmos Chem Phys 17:1–18CrossRefGoogle Scholar
  96. Weber RJ, Sullivan AP, Peltier RE, Russell A, Yan B, Zheng M, de Grouw J, Warneke C, Brock C, Holloway JS, Atlas EL, Edgerton E (2007) A study of secondary organic aerosol formation in the anthropogenic influenced southeastern United States. J Geophys Res, D13302 112Google Scholar
  97. Weyant CL, Chen PF, Vaidya A, Li CL, Zhang QG, Thompson R, Ellis J, Chen YJ, Kang SC, Shrestha GR, Yagnaraman M, Arineitwe J, Edwards R, Bond TC (2019) Emission measurements from traditional biomass cookstoves in South Asia and Tibet. Environ Sci Technol 53:3306–3314CrossRefGoogle Scholar
  98. Wu GM, Ram K, Fu PQ, Wang W, Zhang YL, Liu XY, Stone EA, Pradhan BB, Dangol PM, Panday AK, Wan X, Bai ZP, Kang SC, Zhang QG, Cong ZY (2019) Water-soluble brown carbon in atmospheric aerosols from Godavari (Nepal), a regional representative of South Asia. Environ Sci Technol 53:3471–3479CrossRefGoogle Scholar
  99. Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, Alfarra MR, Takami A, Middlebrook AM, Sun YL, Dzepina K, Dunlea E, Docherty K, DeCarlo PF, Salcedo D, Onasch T, Jayne JT, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottrell L, Griffin RJ, Rautiainen J, Sun JY, Zhang YM, Worsnop DR (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett 34:L13801Google Scholar
  100. Zhang XY, Wang YQ, Zhang XC, Guo W, Niu T, Gong SL, Yin Y, Zhao P, Jin JL, Yu M (2008) Aerosol monitoring at multiple locations in China: contributions of EC and dust to aerosol light absorption. Tellus B 60:647–656CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Pengfei Chen
    • 1
  • Shichang Kang
    • 1
    • 2
    • 3
    Email author
  • Lekhendra Tripathee
    • 1
  • Arnico K. Panday
    • 4
  • Maheswar Rupakheti
    • 5
  • Dipesh Rupakheti
    • 1
  • Qianggong Zhang
    • 2
    • 6
  • Junming Guo
    • 1
  • Chaoliu Li
    • 2
    • 6
  • Tao Pu
    • 1
  1. 1.State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences (CAS)Northwest Institute of Eco-Environment and ResourcesLanzhouPeople’s Republic of China
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.University of CASBeijingChina
  4. 4.International Centre for Integrated Mountain DevelopmentKathmanduNepal
  5. 5.Institute for Advanced Sustainability StudiesPotsdamGermany
  6. 6.Key Laboratory of Tibetan Environment Changes and Land Surface ProcessesInstitute of Tibetan Plateau Research, CASBeijingChina

Personalised recommendations