Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant

  • Mariana Elisa VezzaEmail author
  • Maria Florencia Olmos Nicotra
  • Elizabeth Agostini
  • Melina Andrea Talano
Research Article


Azospirillum brasilense Cd is a bacterial strain widely used as an inoculant of several crops due to its plant growth promoting properties. However, its beneficial effects depend on its viability and functionality under adverse environmental conditions, including the presence of arsenic (As) in agricultural soils. Therefore, the aim of this work was to evaluate the response of A. brasilense Cd to arsenate (AsV) and arsenite (AsIII). This bacterium was tolerant to As concentrations frequently found in soils. Moreover, properties related to roots colonization (motility, biofilm, and exopolymers) and plant growth promotion (auxin, siderophore production, and N2 fixation) were not significantly affected by the metalloid. In order to deepen the understanding on As responses of A. brasilense Cd, As resistance genes were sequenced and characterized for the first time in this work. These genes could mediate the redox As transformation and its extrusion outside the cell, so they could have direct association with the As tolerance observed. In addition, its As oxidation/reduction capacity could contribute to change the AsV/AsIII ratio in the environment. In conclusion, the results allowed to elucidate the As response of A. brasilense Cd and generate interest for its potential use in polluted environments.


Azospirillum brasilense Cd Arsenic Biofilm Exopolymers ars operon Arsenic transformation 



Mariana Elisa Vezza is a CONICET scholarship. Maria Florencia Olmos Nicotra is a postdoctoral fellow. Elizabeth Agostini and Melina Andrea Talano are members of the research career from CONICET. We wish to thank FONCYT (PICT 828/13), SeCyT-UNRC (PPI-C439), and CONICET.

Supplementary material

11356_2019_6959_MOESM1_ESM.pdf (631 kb)
ESM 1 (PDF 630 kb)


  1. Alikhan NF, Petty NK, Zakour NLB, Beatson SA (2011) BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12(1):1CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefGoogle Scholar
  3. Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40(2):299–322CrossRefGoogle Scholar
  4. Armendariz AL, Talano MA, Olmos Nicotra MF, Escudero L, Breser ML, Porporatto C, Agostini E (2019) Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiol Biochem 138:26–35CrossRefGoogle Scholar
  5. Armendariz AL, Talano MA, Wevar Oller AL, Medina MI, Agostini E (2015) Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J Environ Sci 33:203–210CrossRefGoogle Scholar
  6. APHA (2017) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DCGoogle Scholar
  7. Bahar MM, Megharaj M, Naidu R (2016) Oxidation of arsenite to arsenate in growth medium and groundwater using a novel arsenite-oxidizing diazotrophic bacterium isolated from soil. Int Biodeterior Biodegrad 106:178–182CrossRefGoogle Scholar
  8. Barrionuevo MR, Vullo DL (2012) Bacterial swimming, swarming and chemotactic response to heavy metal presence: which could be the influence on wastewater biotreatment efficiency? World J Microbiol Biotechnol 28(9):2813–2825CrossRefGoogle Scholar
  9. Bashan Y, Bustillos JJ, Leyva LA, Hernandez JP, Bacilio M (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils 42(4):279–285CrossRefGoogle Scholar
  10. Belimov AA, Dietz KJ (2000) Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155(2):113–121CrossRefGoogle Scholar
  11. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  12. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu CW, López D, Armienta MA, Guilherme LRG, Cuevas AG, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Tot Environ 429:2–35CrossRefGoogle Scholar
  13. Cassán F, Diaz-Zorita M (2016) Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol Biochem 103:117–130CrossRefGoogle Scholar
  14. Cassán F, Okon Y, Creus CM (eds) (2015) Handbook for Azospirillum, vol Vol. 10. Springer, ChamGoogle Scholar
  15. Castro MR, Ranieri MC, Vázquez C, Giorgi A (2017) Arsenic in the health of ecosystems: spatial distribution in water, sediment and aquatic biota of Pampean streams. Environ Monit Assess 189(11):542CrossRefGoogle Scholar
  16. Chen J, Bhattacharjee H, Rosen BP (2015) ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide MSMA and the poultry growth promoter roxarsone. Mol Microbiol 96(5):1042–1052CrossRefGoogle Scholar
  17. Chibeba AM, de Fátima GM, Brito OR, Nogueira MA, Araujo RS, Hungria M (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci 6(10):1641CrossRefGoogle Scholar
  18. Corguinha APB, De Souza GA, Gonçalves VC, De Andrade CC, De Lima WEA, Martins FAD, Yamanaka CH, Francisco EAB, Guilherme LRG (2015) Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. J Food Compos Anal 37:143–150CrossRefGoogle Scholar
  19. Darling AE, Mau B, Perna NT (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147CrossRefGoogle Scholar
  20. Das S, Jean JS, Chou ML, Rathod J, Liu CC (2016) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18CrossRefGoogle Scholar
  21. De-Bashan LE, Hernandez JP, Nelson KN, Bashan Y, Maier RM (2010) Growth of quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure. Microb Ecol 60(4):915–927CrossRefGoogle Scholar
  22. Di Salvo LP, Silva E, Teixeira KR, Cote RE, Pereyra MA, García de Salamone IE (2014) Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria. J Basic Microbial 54(12):1310–1321CrossRefGoogle Scholar
  23. Dische Z (1962) General color reactions. Methods Carbohydr Chem 1:477–479Google Scholar
  24. Döbereiner J (1988) Isolation and identification of root associated diazotrophs. Plant Soil 110:207–212CrossRefGoogle Scholar
  25. US-EPA (2007) Method 7010: graphite furnace atomic absorption spectrophotometry. In: Test methods for evaluating solid waste, physical/chemical methods SW-846. Office of Solid Waste, Washington DCGoogle Scholar
  26. Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191CrossRefGoogle Scholar
  27. Fekih IB, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9Google Scholar
  28. Ghosh P, Rathinasabapathi B, Teplitski M, Ma LQ (2015) Bacterial ability in AsIII oxidation and AsV reduction: relation to arsenic tolerance, P uptake, and siderophore production. Chem 138:995–1000Google Scholar
  29. Glickman E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796Google Scholar
  30. Han YH, Yin DX, Jia MR, Wang SS, Chen Y, Rathinasabapathi B, Chen DL, Ma LQ (2019) Arsenic-resistance mechanisms in bacterium Leclercia adecarboxylata strain As3-1: biochemical and genomic analyses. Sci Tot Environ 690:1178–1189CrossRefGoogle Scholar
  31. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49(7):791–801CrossRefGoogle Scholar
  32. Jia MR, Tang N, Cao Y, Chen Y, Han YH, Ma LQ (2019) Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: characterization and genome analysis. Chem 218:1061–1070Google Scholar
  33. Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17(1):37–50CrossRefGoogle Scholar
  34. Karn SK, Pan X, Jenkinson IR (2017) Bio-transformation and stabilization of arsenic (As) in contaminated soil using arsenic oxidizing bacteria and FeCl3 amendment. 3 Biotech 7(1):50CrossRefGoogle Scholar
  35. Koechler S, Farasin J, Cleiss-Arnold J, Arsène-Ploetze F (2015) Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Res Microbiol 166(10):764–773CrossRefGoogle Scholar
  36. Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97(9):3827–3841CrossRefGoogle Scholar
  37. Lyubun YV (2009) Effect of indole-3-acetic acid on arsenic translocation in agricultural crops. World Acad Sci Eng Technol 58:998–1001Google Scholar
  38. Lyubun YV, Fritzsche A, Chernyshova MP, Dudel EG, Fedorov EE (2006) Arsenic transformation by Azospirillum brasilense Sp245 in association with wheat (Triticum aestivum L.) roots. Plant Soil 286(1–2):219–227CrossRefGoogle Scholar
  39. Milagres AMF, Machuca A, Napoleao D (1999) Methods detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6CrossRefGoogle Scholar
  40. Mueller K, González JE (2011) Complex regulation on symbiotic functions is coordinated by MucR and quorum sensing in Sinorhizobium meliloti. J Bacteriol 193:485–496CrossRefGoogle Scholar
  41. Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180(1–4):199–212CrossRefGoogle Scholar
  42. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefGoogle Scholar
  43. Nicolli HB, Bundschuh J, Blanco MDC, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Tot Environ 429:36–56CrossRefGoogle Scholar
  44. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461CrossRefGoogle Scholar
  45. Okon Y, Labandera-Gonzales C, Lage M, Lage P (2015) Agronomic applications of Azospirillum and other PGPR. Biological nitrogen fixation. Wiley, HobokenGoogle Scholar
  46. Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz AO, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75(5):1143–1150CrossRefGoogle Scholar
  47. Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. RSC Adv 6(111):109862–109877CrossRefGoogle Scholar
  48. Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220CrossRefGoogle Scholar
  49. Rivera D, Revale S, Molina R, Gualpa J, Puente M, Maroniche G, Paris G, Baker D, Clavijo B, McLay K, Spaepen S, Perticari A, Vazquez M, Wisniewski-Dyé F, Watkins C, Martínez-Abarca F, Vanderleyden J, Cassán F (2014) Complete genome sequence of the model rhizosphere strain Azospirillum brasilense Az39, successfully applied in agriculture. Genome Announc 2(4):e00683–e00614CrossRefGoogle Scholar
  50. Rossi FA, Medeot DB, Liaudat JP, Pistorio M, Jofré E (2016) In Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots. Microbiol Res 190:55–62CrossRefGoogle Scholar
  51. Sambrook S, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual (2nd ed.). Cold Spring Harbor, New YorkGoogle Scholar
  52. Sheng GP, Yu HQ, Yue ZB (2005) Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Appl Microbiol Biotechnol 69(2):216–222CrossRefGoogle Scholar
  53. Smedley PL, Kinniburgh DG (2013) Arsenic in groundwater and the environment. In: Selinus O (ed) Essentials of medical geology. Springer, Dordrecht, pp 279–310CrossRefGoogle Scholar
  54. Somasegaran P, Hoben HJ (1994) General microbiology of rhizobia-evaluating symbiotic potential of rhizobia. In: Somasegaran P, Hoben HJ (eds) Handbook for rhizobia. Springer, New York, pp 171–176CrossRefGoogle Scholar
  55. Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367CrossRefGoogle Scholar
  56. Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193(4):275–286CrossRefGoogle Scholar
  57. Wang S, Yuan S, Su L, Lv A, Zhou P, An Y (2017) Aluminum toxicity in alfalfa (Medicago sativa) is alleviated by exogenous foliar IAA inducing reduction of Al accumulation in cell wall. Environ Exp Bot 139:1–13CrossRefGoogle Scholar
  58. Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, González V, Mavingui P, Zhulin IB (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7(12):e1002430CrossRefGoogle Scholar
  59. Yan G, Chen X, Du S, Deng Z, Wang L, Chen S (2018) Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet:1–10Google Scholar
  60. Yang HC, Rosen BP (2016) New mechanisms of bacterial arsenic resistance. Biom J 39(1):5–13Google Scholar
  61. Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403CrossRefGoogle Scholar
  62. Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S, Shafiq S, Kanwal N, Ali F, Nasir IA (2016) Rhizobacteria and phytoremediation of heavy metals. Environ Technol Rev 5(1):112–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biología Molecular, FCEFQyNUniversidad Nacional de Río Cuarto (UNRC)Río CuartoArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations