Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A novel sorbent based on Ti-Ca-Mg phosphates: synthesis, characterization, and sorption properties

  • 44 Accesses


This work focuses on the synthesis procedure of a new sorbent based on a TiCaMg phosphate. The synthesis strategy includes stepwise interaction between solid precursors and phosphorus-containing agents. The solid precursors were ammonium titanyl sulfate and calcined dolomite, which were used as titanium, calcium, and magnesium sources. The effect of the nature and concentration of phosphoric agent on the sorbent composition and properties has been investigated using elemental analysis, TG, XRD, IR spectroscopy, BET, and SEM techniques. The novel sorbent has been demonstrated to be a composite material consisting of the following components: TiO(OH)H2PO4·H2O, Ti(HPO4)2·H2O, CaHPO4·2H2O, MgНPO4·3H2O, and NH4MgPO4·6H2O. The ratio between these phases in the composite depends on synthesis conditions. The optimal conditions, ensuring full conversion of Ti, Ca, and Mg containing in the initial precursors into the final product, have been found. The sorption properties of the obtained composite sorbent towards Co2+, Cs+, and Sr2+ cations and their radionuclide analogues have been studied. The obtained data has indicated that the purification effect was based on both precipitation and ion exchange mechanism. The combined action of the individual components of the composite sorbent ensures its high sorption capacity towards different cations in a wide pH range. The new sorbent shows high sorption ability towards radionuclides in multicomponent liquid radioactive waste (LRW) systems, and the distribution coefficient of the studied radionuclides was found to be 105 mL g−1. The presence of different types of functional groups in the composite sorbent allows realizing the one-step purification process of LRW that, in turn, simplifies the sorption system design.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Data availability

The raw and processed data required to reproduce these findings are available to download from ([dataset] Mudruk et al. 2019).


  1. Abbona F, Franchini-Angela M, Boistelle R (1992) Crystallization of calcium and magnesium phosphates from solutions of medium and low concentrations. Cryst Res Technol 27:41–48. https://doi.org/10.1002/crat.2170270107

  2. Al Attar L, Safia B, Ghani BA (2018) Uptake of 137Cs and 85Sr onto thermally treated forms of bentonite. J Environ Radioact 193–194:36–43. https://doi.org/10.1016/j.jenvrad.2018.08.015

  3. Attallah MF, Abd-Elhamid AI, Ahmed IM, Aly HF (2018) Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste. J Mol Liq 261:379–386. https://doi.org/10.1016/j.molliq.2018.04.050

  4. Avramenko VA, Egorin AM, Papynov EK, Sokol’nitskaya TA, Tananaev IG, Sergienko VI (2017) Processes for treatment of liquid radioactive waste containing seawater. Radiochemistry 59:407–413. https://doi.org/10.1134/S1066362217040142

  5. Bortun AI, Bortun LN, Stepin AA, Pekhamkina NP (1993) 137Cs sorption on granular inorganic ion-exchangers based on titanium and zirconium hydroxophosphates. J Radioanal Nucl Chem Artic 174:279–289. https://doi.org/10.1007/BF02037915

  6. Bortun AI, Bortun L, Clearfield A, Villa-García MA, García JR, Rodríguez J (1996) Synthesis and characterization of a novel layered titanium phosphate. J Mater Res 11:2490–2498. https://doi.org/10.1557/JMR.1996.0314

  7. Bouropoulos NC, Koutsoukos PG (2000) Spontaneous precipitation of struvite from aqueous solutions. J Cryst Growth 213:381–388. https://doi.org/10.1016/S0022-0248(00)00351-1

  8. Bratskaya SY, Zheleznov VV, Avramenko VA (2014) Dust suppression composite coatings containing nanosized selective sorbents for the prevention of cesium radionuclide migration. Dokl Phys Chem 454:12–15. https://doi.org/10.1134/S0012501614010047

  9. Cheng Y, Dong (Tony) Wang X, Jaenicke S, Chuah GK (2018) Mechanochemistry-based synthesis of highly crystalline γ-zirconium phosphate for selective ion exchange. Inorg Chem 57:4370–4378. https://doi.org/10.1021/acs.inorgchem.7b03202

  10. Clearfield A (1995) Inorganic ion exchangers: a technology ripe for development. Ind Eng Chem Res 34:2865–2872. https://doi.org/10.1021/ie00047a040

  11. Clearfield A, Bortun AI, Khainakov SA, Bortun LN, Strelko VV, Khryaschevskii VN (1998) Spherically granulated titanium phosphate as exchanger for toxic heavy metals. Waste Manag 18:203–210. https://doi.org/10.1016/S0956-053X(98)00024-5

  12. Dąbrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006

  13. [dataset] Mudruk N, Maslova M, Ivanets A, Kitikova N, & Shashkova I (2019) Synthesis of a new adsorbent based on Ca-Mg-Ti phosphates. Mendeley Data 3. https://doi.org/10.17632/nyg73hy9z3.3

  14. Duan S, Wu L, Li J, Huang Y, Tan X, Wen T, Hayat T, Alsaedi A, Wang X (2019) Two-dimensional copper-based metal−organic frameworks nano-sheets composites: one-step synthesis and highly efficient U(VI) immobilization. J Hazard Mater 373:580–590. https://doi.org/10.1016/j.jhazmat.2019.03.119

  15. Egorin AM, Sokolnitskaya TA, Tutov MV, Tokaŕ EA, Matveikin MY, Avramenko VA (2015) Composite selective sorbents for sea water decontamination from cesium and strontium radionuclides. Dokl Phys Chem 460:10–14. https://doi.org/10.1134/S0012501615010030

  16. Egorin A, Sokolnitskaya T, Azarova Y, Portnyagin A, Balanov M, Misko D, Shelestyuk E, Kalashnikova A, Tokar E, Tananaev I, Avramenko V (2018) Investigation of Sr uptake by birnessite-type sorbents from seawater. J Radioanal Nucl Chem 317:243–251. https://doi.org/10.1007/s10967-018-5905-2

  17. Einaga H (1979) Hydrolysis of titanium(IV) in aqueous (Na,H)Cl solution. J Chem Soc Dalt Trans 12:1917. https://doi.org/10.1039/dt9790001917

  18. Eljamal O, Shubair T, Tahara A, Sugihara Y, Matsunaga N (2019) Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions. J Mol Liq 277:613–623. https://doi.org/10.1016/j.molliq.2018.12.115

  19. Galamboš M, Kufčáková J, Rosskopfová O, Rajec P (2010) Adsorption of cesium and strontium on natrified bentonites. J Radioanal Nucl Chem 283:803–813. https://doi.org/10.1007/s10967-009-0424-9

  20. Galamboš M, Suchánek P, Rosskopfová O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293:613–633. https://doi.org/10.1007/s10967-012-1717-y

  21. Gao J, Sun S-P, Zhu W-P, Chung T-S (2014) Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Res 63:252–261. https://doi.org/10.1016/j.watres.2014.06.006

  22. Gerasimova LG, Maslova MV, Shchukina ES (2009) The technology of sphene concentrate treatment to obtain titanium salts. Theor Found Chem Eng 43:464–467. https://doi.org/10.1134/s0040579509040186

  23. Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc 846:–3973. https://doi.org/10.1039/jr9600003973

  24. Goto T, Cho SH, Lee SW, Sekino T (2018) Sorption capacity of Cs+ on titania nanotubes synthesized by solution processing. J Ceram Soc Japan 126:801–807. https://doi.org/10.2109/jcersj2.18078

  25. Gruszecka-Kosowska A, Baran P, Wdowin M, Franus W (2017) Waste dolomite powder as an adsorbent of cd, Pb(II), and Zn from aqueous solutions. Environ Earth Sci 76. https://doi.org/10.1007/s12665-017-6854-8

  26. Han Y, Li S, Wang X, Bauer I, Yin M (2007) Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans. Ultrason Sonochem 14:286–290. https://doi.org/10.1016/j.ultsonch.2006.06.002

  27. Handley-Sidhu S, Mullan TK, Grail Q, Albadarneh M, Ohnuki T, Macaskie LE (2016) Influence of pH, competing ions and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite. Sci Rep 6:23361. https://doi.org/10.1038/srep23361

  28. Hassani A, Khataee A, Karaca S, Shirzad-Siboni M (2015) Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: kinetic and isotherm studies. Environ Technol 36:3125–3135. https://doi.org/10.1080/09593330.2015.1054319

  29. Ivanets AI, Shashkova IL, Kitikova NV, Drozdova NV, Saprunova NA, Radkevich AV, Kul’bitskaya LV (2014) Sorption of strontium ions from solutions onto calcium and magnesium phosphates. Radiochemistry 56:32–37. https://doi.org/10.1134/s106636221401007x

  30. Ivanets AI, Kitikova NV, Shashkova IL, Oleksiienko OV, Levchuk I, Sillanpää M (2016) Using of phosphatized dolomite for treatment of real mine water from metal ions. J Water Process Eng 9:246–253. https://doi.org/10.1016/j.jwpe.2016.01.005

  31. Ivanets AI, Srivastava V, Kitikova NV, Shashkova IL, Sillanpää M (2017a) Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates. Chemosphere 171:348–354. https://doi.org/10.1016/j.chemosphere.2016.12.062

  32. Ivanets AI, Srivastava V, Kitikova NV, Shashkova IL, Sillanpää M (2017b) Non-apatite Ca-Mg phosphate sorbent for removal of toxic metal ions from aqueous solutions. J Environ Chem Eng 5:2010–2017. https://doi.org/10.1016/j.jece.2017.03.041

  33. Ivanets A, Kitikova N, Shashkova I, Radkevich A, Shemet L, Sillanpää M (2018) Effective removal of 60Co from high-salinity water by Ca–Mg phosphate sorbents. J Radioanal Nucl Chem 318:2341–2347. https://doi.org/10.1007/s10967-018-6291-5

  34. Jones TD, Owen BA, Trabalka JR (1991) Protection of human health from mixtures of radionuclides and chemicals in drinking water. Arch Environ Contam Toxicol 20:143–150. https://doi.org/10.1007/BF01065341

  35. Kaplan DI, Knox AS (2004) Enhanced contaminant desorption induced by phosphate mineral additions to sediment. Environ Sci Technol 38:3153–3160. https://doi.org/10.1021/es035112f

  36. Kapnisti M, Hatzidimitriou AG, Noli F, Pavlidou E (2014) Investigation of cesium uptake from aqueous solutions using new titanium phosphates ion-exchangers. J Radioanal Nucl Chem 302:679–688. https://doi.org/10.1007/s10967-014-3286-8

  37. Kapnisti M, Noli F, Misaelides P, Vourlias G, Karfaridis D, Hatzidimitriou A (2018) Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chem Eng J 342:184–195. https://doi.org/10.1016/j.cej.2018.02.066

  38. Kim Y, Kim YK, Kim JH, Yim M-S, Harbottle D, Lee JW (2018) Synthesis of functionalized porous montmorillonite via solid-state NaOH treatment for efficient removal of cesium and strontium ions. Appl Surf Sci 450:404–412. https://doi.org/10.1016/j.apsusc.2018.04.181

  39. Kitikova NV, Ivanets AI, Shashkova IL, Radkevich AV, Shemet LV, Kul’bitskaya LV, Sillanpää M (2017) Batch study of 85Sr adsorption from synthetic seawater solutions using phosphate sorbents. J Radioanal Nucl Chem 314:2437–2447. https://doi.org/10.1007/s10967-017-5592-4

  40. Li H, Yao QZ, Dong ZM, Zhao TL, Zhou GT, Fu SQ (2019) Controlled synthesis of Struvite nanowires in synthetic wastewater. ACS Sustain Chem Eng 7:2035–2043. https://doi.org/10.1021/acssuschemeng.8b04393

  41. Liu DM, Troczynski T, Tseng WJ (2001) Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials 22:1721–1730. https://doi.org/10.1016/S0142-9612(00)00332-X

  42. Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H (2003) The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int 29:629–633. https://doi.org/10.1016/S0272-8842(02)00210-9

  43. Liu X, Sun J, Xu X, Alsaedi A, Hayat T, Li J (2019a) Adsorption and desorption of U(VI) on different-size graphene oxide. Chem Eng J 360:941–950. https://doi.org/10.1016/j.cej.2018.04.050

  44. Liu X, Wu J, Zhang S, Ding C, Sheng G, Alsaedi A, Hayat T, Li J, Song Y (2019b) Amidoxime-functionalized hollow carbon spheres for efficient removal of uranium from wastewater. ACS Sustain Chem Eng 7:10800–10807. https://doi.org/10.1021/acssuschemeng.9b01616

  45. Lonin AY, Levenets VV, Omelnik OP, Shchur AO (2018) Comparison of the sorption properties of natural and synthetic zeolites for the purification of aqueous solutions from cobalt: sorption of the cobalt from aqueous solutions in dynamic conditions and the quantitative determination of cobalt by the PIXE met. J Radioanal Nucl Chem 315:163–169. https://doi.org/10.1007/s10967-017-5676-1

  46. Ludmany A, Tonok G, Nagy LG (1988) Investigations on the sorption mechanism of amorphous titanium phosphate inorganic sorbent. React Polym Ion Exch Sorbents 7:309. https://doi.org/10.1016/0167-6989(88)90174-2

  47. Marinin DV, Brown GN (2000) Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Manag 20:545–553. https://doi.org/10.1016/S0956-053X(00)00017-9

  48. Maslova MV, Rusanova D, Naydenov V, Antzutkin ON, Gerasimova LG (2012) Extended study on the synthesis of amorphous titanium phosphates with tailored sorption properties. J Non-Cryst Solids 358:2943–2950. https://doi.org/10.1016/j.jnoncrysol.2012.06.033

  49. Maslova MV, Ivanenko VI, Gerasimova LG, Ryzhuk NL (2018) Effect of synthesis method on the phase composition and ion-exchange properties of titanium phosphate. Russ J Inorg Chem 63:1141–1148. https://doi.org/10.1134/S0036023618090115

  50. McMaster SA, Ram R, Faris N, Pownceby MI (2018) Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix—a review. J Hazard Mater 360:257–269. https://doi.org/10.1016/j.jhazmat.2018.08.037

  51. Merceille A, Weinzaepfel E, Barré Y, Grandjean A (2012) The sorption behaviour of synthetic sodium nonatitanate and zeolite a for removing radioactive strontium from aqueous wastes. Sep Purif Technol 96:81–88. https://doi.org/10.1016/j.seppur.2012.05.018

  52. Meunier N, Drogui P, Montané C, Hausler R, Mercier G, Blais J-F (2006) Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J Hazard Mater 137:581–590. https://doi.org/10.1016/j.jhazmat.2006.02.050

  53. Milyutin VV, Nekrasova NA, Yanicheva NY, Kalashnikova GO, Ganicheva YY (2017) Sorption of cesium and strontium radionuclides onto crystalline alkali metal titanosilicates. Radiochemistry 59:65–69. https://doi.org/10.1134/S1066362217010088

  54. Mohammadi M, Ghaemi A, Torab-Mostaedi M, Asadollahzaden M, Hemmati A (2015) Adsorption of cadmium and nickel from aqueous solutions using dolomite powder. Desalin Water Treat 53(1):149–157. https://doi.org/10.1080/19443994.2013.836990

  55. Nikashina VA, Serova IB, Kats EM, Tokmachev MG, Toropchenova ES, Zhilkina AV, Kuz’mina TG, Bulenova K (2017) Permeable reactive barriers based on natural zeolites from Kazakhstan in solving ecological problems: mathematical model and simulation. Geochem Int 55:38–46. https://doi.org/10.1134/S0016702916130127

  56. Orlova AI, Orlova VA, Orlova MP, Bykov DM, Stefanovskii SV, Stefanovskaya OI, Nikonov BS (2006) The crystal-chemical principle in designing mineral-like phosphate ceramics for immobilization of radioactive waste. Radiochemistry 48:330–339. https://doi.org/10.1134/S1066362206040035

  57. Ortíz-Oliveros HB, Flores-Espinosa RM, Ordoñez-Regil E, Fernández-Valverde SM (2014) Synthesis of α-Ti(HPO4)2·H2O and sorption of Eu (III). Chem Eng J 236:398–405. https://doi.org/10.1016/j.cej.2013.09.103

  58. Papynov EK, Egorin AM, Sokolnitskaya TA, Marinin DV, Azarova YA, Portnyagin AS, Balanov MI, Misko DS, Shelestiuk EA, Kalashnikova AM, Tokar EA, Tananaev IG, Avramenko VA (2018) Manganese oxide-based sorbent for Sr-90 radionuclide removal from seawater. IOP Conf Ser Mater Sci Eng 307:012030. https://doi.org/10.1088/1757-899X/307/1/012030

  59. Rahman ROA, Ibrahium HA, Hung Y-T (2011) Liquid radioactive wastes treatment: a review. Water 3:551–565. https://doi.org/10.3390/w3020551

  60. Raicevic S, Plecas I, Lalovic DI, Veljkovic V (1999) Optimization of immobilization of strontium and uranium by the solid matrix. MRS Proc 556:135. https://doi.org/10.1557/PROC-556-135

  61. Rat’ko AI, Ivanets AI, Sakhar IO, Davydov DY, Toropova VV, Radkevich AV (2011) A sorbent based on natural dolomite for recovery of cobalt radionuclides. Radiochemistry 53:633–637. https://doi.org/10.1134/S1066362211060105

  62. Rigali MJ, Brady PV, Moore RC (2016) Radionuclide removal by apatite. Am Mineral 101:2611–2619. https://doi.org/10.2138/am-2016-5769

  63. Sahu BB, Parida K (2002) Cation exchange and sorption properties of crystalline α-titanium(IV) phosphate. J Colloid Interface Sci 248:221–230. https://doi.org/10.1006/jcis.2001.7818

  64. Semenischev VS, Voronina AV, Bykov AA (2013) The study of sorption of caesium radionuclides by “T-55” ferrocyanide sorbent from various types of liquid radioactive wastes. J Radioanal Nucl Chem 295:1753–1757. https://doi.org/10.1007/s10967-012-2299-4

  65. Sepehrian H, Yavari R, Ghannadi Maragheh M, Waqif Husain S (2008) Sorption of radionuclides on mesoporous Sn(IV) silicate: a new sorbent. Radiochim Acta 96. https://doi.org/10.1524/ract.2008.1472

  66. Shashkova IL, Ivanets AI, Kitikova NV, Sillanpää M (2017) Effect of phase composition on sorption behavior of Ca-mg phosphates towards Sr(II) ions in aqueous solution. J Taiwan Inst Chem Eng 80:787–796. https://doi.org/10.1016/j.jtice.2017.09.027

  67. Sheha RR, Moussa SI, Attia MA, Sadeek SA, Someda HH (2018) Development and application of carbon nanotubes reinforced hydroxyapatite composite in separation of Co(II) and Eu(III) ions from aqueous solutions. Radiochim Acta 107:67–82. https://doi.org/10.1515/ract-2017-2922

  68. Smičiklas I, Onjia A, Raičević S, Janaćković Đ, Mitrić M (2008) Factors influencing the removal of divalent cations by hydroxyapatite. J Hazard Mater 152:876–884. https://doi.org/10.1016/j.jhazmat.2007.07.056

  69. Stoch P, Ciecinska M (2012) Thermochemistry of phosphate glasses for immobilization of dangerous waste. J Therm Anal Calorim 108:705–709. https://doi.org/10.1007/s10973-011-1974-y

  70. Sugiyama S, Ichii T, Hayashi H, Tomida T (2002) Lead immobilization by non-apatite-type calcium phosphates in aqueous solutions. Inorg Chem Commun 5:156–158. https://doi.org/10.1016/S1387-7003(02)00326-X

  71. Sugiyama S, Ichii T, Fujisawa M, Kawashiro K, Tomida T, Shigemoto N, Hayashi H (2003) Heavy metal immobilization in aqueous solution using calcium phosphate and calcium hydrogen phosphates. J Colloid Interface Sci 259:408–410. https://doi.org/10.1016/S0021-9797(02)00211-4

  72. Tang M, Chen J, Wang P, Wang C, Ao Y (2018) Highly efficient adsorption of uranium(VI) from aqueous solution by a novel adsorbent: titanium phosphate nanotube. Environ Sci Nano 5:2304–2314. https://doi.org/10.1039/C8EN00761F

  73. Thomson BM, Smith CL, Busch RD, Siegel MD, Baldwin C (2003) Removal of metals and radionuclides using apatite and other natural sorbents. J Environ Eng 129:492–499. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:6(492)

  74. Tovar-Gómez R, Rivera-Ramírez DA, Hernández-Montoya V, Bonilla-Petriciolet A, Durán-Valle CJ, Montes-Morán MA (2012) Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO 3) 2-modified carbon. J Hazard Mater 199–200:290–300. https://doi.org/10.1016/j.jhazmat.2011.11.015

  75. Vinokurov SE, Kulikova SA, Myasoedov BF (2018) Magnesium potassium phosphate compound for immobilization of radioactive waste containing actinide and rare earth elements. Materials (Basel) 11. https://doi.org/10.3390/ma11060976

  76. Wang D, Xu Y, Xiao D, Qiao Q, Yin P, Yang Z, Li J, Winchester W, Wang Z, Hayat T (2019a) Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption. J Hazard Mater 371:83–93. https://doi.org/10.1016/j.jhazmat.2019.02.091

  77. Wang L, Pei H, Sarma D, Zhang X-M, MacRenaris K, Malliakas CD, Kanatzidis MG (2019b) Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 62:933–967. https://doi.org/10.1007/s11426-019-9492-4

  78. Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Xie Y, Yu S, Xiao C, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X (2019c) Highly selective radioactive 137 Cs + capture in an open-framework Oxysulfide based on Supertetrahedral cluster. Chem Mater 31:1628–1634.https://doi.org/10.1021/acs.chemmater.8b04877

  79. Xia X, Shen J, Cao F, Wang C, Tang M, Zhang Q, Wei S (2019) A facile synthesis of hydroxyapatite for effective removal strontium ion. J Hazard Mater 368:326–335. https://doi.org/10.1016/j.jhazmat.2019.01.040

  80. Zhang C, Li X, Chen Z, Wen T, Huang S, Hayat T, Alsaedi A, Wang X (2018) Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions. Sci China Chem 61:281–293. https://doi.org/10.1007/s11426-017-9132-7

  81. Zhu Y, Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Hayashi K, Nakanishi K (2017) Nanostructured titanium phosphates prepared via hydrothermal reaction and their electrochemical Li- and Na-ion intercalation properties. CrystEngComm 19:4551–4560. https://doi.org/10.1039/c7ce01123g

  82. Zubekhina BY, Burakov BE, Petrov YY, Britvin SN, Mararitsa VF, Demidov YT, Nickolsky MS (2018) New route for synthesis of Synroc-like ceramic using non-selective sorbent LHT-9. MRS Adv 3:1111–1116. https://doi.org/10.1557/adv.2018.208

Download references


The reported study was funded by RFBR Bel-a according to the research project N18-53-00003 and Belarusian Republican Foundation for Fundamental Research according to Grant #X18PA-026.

Author information

Correspondence to Marina Maslova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maslova, M., Mudruk, N., Ivanets, A. et al. A novel sorbent based on Ti-Ca-Mg phosphates: synthesis, characterization, and sorption properties. Environ Sci Pollut Res 27, 3933–3949 (2020). https://doi.org/10.1007/s11356-019-06949-3

Download citation


  • Ammonium titanyl sulfate
  • Calcined dolomite
  • Synthesis
  • Composite sorbent
  • Sorption properties
  • Radionuclides