Effects of short-term exposure of paracetamol in the gonads of blue mussels Mytilus edulis

  • Wulan Koagouw
  • Corina CiocanEmail author
Challenges in Emerging Environmental Contaminants


A growing body of literature suggests that pharmaceutical contamination poses an increasing risk to marine ecosystems. Paracetamol or acetaminophen is the most widely used medicine in the world and has recently been detected in seawater. Here, we present the results of 7 days’ exposure of blue mussel adults to 40 ng/L, 250 ng/L and 100 μg/L of paracetamol. Histopathology shows that haemocytic infiltration is the most observed condition in the exposed mussels. The mRNA expression of VTG, V9, ER2, HSP70, CASP8, BCL2 and FAS in mussel gonads present different patterns of downregulation. VTG and CASP8 mRNA expression show downregulation in all exposed mussels, irrespective of sex. The V9, HSP70, BCL2 and FAS transcripts follow a concentration-dependent variation in gene expression and may therefore be considered good biomarker candidates. ER2 mRNA expression shows a downregulated trend, with a clearer dose-response relationship in males. In conclusion, this study suggests that paracetamol has the potential to alter the expression of several genes related to processes occurring in the reproductive system and may therefore impair reproduction in blue mussels.


Short-term exposure Paracetamol Blue mussels Gene expression Histology Seawater Pharmaceuticals Marine pollution 



The authors would like to thank Darren McCabe and Dr. Nicholas Stewart for their assistance.

Funding information

This research is funded by the Ministry of Research, Technology, and Higher Education (MRTHE) Republic of Indonesia through the Research and Innovation in Science and Technology Project (RISET-Pro).


  1. Agunbiade FO, Moodley B (2014) Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa. Environ Monit Assess 186:7273–7291CrossRefGoogle Scholar
  2. Allavena G, Cuomo F, Baumgartner G, Bele T, Sellgren AY, Oo KS, Johnson K, Gogvadze V, Zhivotovsky B, Kaminskyy VO (2018) Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation. Autophagy 14:252–268CrossRefGoogle Scholar
  3. Almeida F, Nunes B (2019) Effects of acetaminophen in oxidative stress and neurotoxicity biomarkers of the gastropod Phorcus lineatus. Environ Sci Pollut Res 26:9823–9831CrossRefGoogle Scholar
  4. Alygizakis NA, Gago-Ferrero P, Borova VL, Pavlidou A, Hatzianestis I, Thomaidis NS (2016) Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci Total Environ 541:1097–1105CrossRefGoogle Scholar
  5. Ankley GT, Jensen KM, Kahl MD, Korte JJ, Makynen EA (2001) Description and evaluation of a short-term reproduction test with the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1276–1290CrossRefGoogle Scholar
  6. Antunes SC, Freitas R, Figueira E, Gonçalves F, Nunes B (2013) Biochemical effects of acetaminophen in aquatic species: edible clams Venerupis decussata and Venerupis philippinarum. Environ Sci Pollut Res 20:6658–6666CrossRefGoogle Scholar
  7. Aref S, Salama O, Al-Tonbary Y, Mansour A (2004) Assessment of bcl-2 expression as modulator of fas mediated apoptosis in acute leukemia. Hematology 9:113–121CrossRefGoogle Scholar
  8. Arrighetti F, Ambrosio E, Astiz M, Capítulo AR, Lavarías S (2018) Differential response between histological and biochemical biomarkers in the apple snail Pomacea canaliculata (Gasteropoda: Amullariidae) exposed to cypermethrin. Aquat Toxicol 194:140–151CrossRefGoogle Scholar
  9. Arukwe A, Knudsen FR, Goksøyr A (1997) Fish zona radiata (eggshell) protein: a sensitive biomarker for environmental estrogens. Environ Health Perspect 105:418–422CrossRefGoogle Scholar
  10. Bannister R, Beresford N, May D, Routledge EJ, Jobling S, Rand-Weaver M (2007) Novel estrogen receptor-related transcripts in Marisa cornuarietis; a freshwater snail with reported sensitivity to estrogenic chemicals. Environ Sci Technol 41:2643–2650CrossRefGoogle Scholar
  11. Bebianno MJ, Mello ACP, Serrano MAS, Flores-Nunes F, Mattos JJ, Zacchi FL, Piazza RS, Piazza CE, Siebert MN, Gomes CHAM, Melo CMR, Bainy ACD (2017) Transcriptional and cellular effects of paracetamol in the oyster Crassostrea gigas. Ecotoxicol Environ Saf 144:258–267CrossRefGoogle Scholar
  12. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475CrossRefGoogle Scholar
  13. Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R, Leone S (2006) Paracetamol: new vistas of an old drug. CNS Drug Rev 12:250–275CrossRefGoogle Scholar
  14. Blalock BJ, Robinson WE, Loguinov A, Vulpe CD, Krick KS, Poynton HC (2018) Transcriptomic and network analyses reveal mechanistic-based biomarkers of endocrine disruption in the marine mussel, Mytilus edulis. Environ Sci Technol 52:9419–9430CrossRefGoogle Scholar
  15. Brandão FP, Pereira JL, Gonçalves F, Nunes B (2014) The impact of paracetamol on selected biomarkers of the mollusc species Corbicula fluminea. Environ Toxicol 29:74–83CrossRefGoogle Scholar
  16. Burket SR, White M, Ramirez AJ, Stanley JK, Banks KE, Waller WT, Chambliss CK, Brooks BW (2019) Corbicula fluminea rapidly accumulate pharmaceuticals from an effluent dependent urban stream. Chemosphere 224:873–883CrossRefGoogle Scholar
  17. Choi K, Kim Y, Park J, Park CK, Kim M, Kim HS, Kim P (2008) Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Sci Total Environ 405:120–128CrossRefGoogle Scholar
  18. Ciocan CM, Cubero-Leon E, Puinean AM, Hill EM, Minier C, Osada M, Fenlon K, Rotchell JM (2010) Effects of estrogen exposure in mussels, Mytilus edulis, at different stages of gametogenesis. Environ Pollut 158:2977–2984CrossRefGoogle Scholar
  19. Ciocan CM, Cubero-Leon E, Minier C, Rotchell JM (2011) Identification of reproduction-specific genes associated with maturation and estrogen exposure in a marine bivalve Mytilus edulis. PLoS One 6:e22326CrossRefGoogle Scholar
  20. Crago J, Bui C, Grewal S, Schlenk D (2016) Age-dependent effects in fathead minnows from the anti-diabetic drug metformin. Gen Comp Endocrinol 232:185–190CrossRefGoogle Scholar
  21. Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367:23–41CrossRefGoogle Scholar
  22. Cubero-Leon E, Ciocan CM (2014) Mussels as a tool to monitor pollution. In: Nowak J, Kozlowski M (eds) Mussels: Ecology, Life Habits and Control. Nova Science Publishers, United States, pp 77–99Google Scholar
  23. Cubero-Leon E, Ciocan CM, Minier C, Rotchell JM (2012) Reference gene selection for qPCR in mussel, Mytilus edulis, during gametogenesis and exogenous estrogen exposure. Environ Sci Pollut Res 19:2728–2733CrossRefGoogle Scholar
  24. Daniel D, Dionísio R, de Alkimin GD, Nunes B (2019) Acute and chronic effects of paracetamol exposure on Daphnia magna: how oxidative effects may modulate responses at distinct levels of organization in a model species. Environ Sci Pollut Res 26:3320–3329CrossRefGoogle Scholar
  25. Estévez-Calvar N, Romero A, Figueras A, Novoa B (2013) Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis. PLoS One 8:e61502CrossRefGoogle Scholar
  26. Franzellitti S, Buratti S, Valbonesi P, Fabbri E (2013) The mode of action (MOA) approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis. Aquat Toxicol 140-141:249–256CrossRefGoogle Scholar
  27. Gagné F, Blaise C (2005) Review of biomarkers and new techniques for in situ aquatic studies with bivalves. In: Thompson C, Wadhia K, Loibner A (eds) Environmental Toxicity Testing. Blackwell Publishing, Oxford, United Kingdom, pp 206–228CrossRefGoogle Scholar
  28. Gonzalez-Rey M, Bebianno MJ (2012) Does non-steroidal anti-inflammatory (NSAID) ibuprofen induce antioxidant stress and endocrine disruption in mussel Mytilus galloprovincialis? Environ Toxicol Pharmacol 33:361–371CrossRefGoogle Scholar
  29. Gonzalez-Rey M, Bebianno MJ (2013) Does selective serotonin reuptake inhibitor (SSRI) fluoxetine affects mussel Mytilus galloprovincialis? Environ Pollut 173:200–209CrossRefGoogle Scholar
  30. Gonzalez-Rey M, Tapie N, Le Menach K, Dévier M-H, Budzinski H, Bebianno MJ (2015) Occurrence of pharmaceutical compounds and pesticides in aquatic systems. Mar Pollut Bull 96:384–400CrossRefGoogle Scholar
  31. Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF (2013) The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology 21:201–232CrossRefGoogle Scholar
  32. Harth FUR, Arras C, Brettschneider DJ, Misovic A, Oehlmann J, Schulte-Oehlmann U, Oetken M (2018) Small but with big impact? Ecotoxicological effects of a municipal wastewater effluent on a small creek. J Environ Sci Health A Tox Hazard Subst Environ Eng 53:1149CrossRefGoogle Scholar
  33. Hassan M, Watari H, Abualmaaty A, Ohba Y, Sakuragi N (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014:150845–150823Google Scholar
  34. Jozwiak-Bebenista M, Nowak JZ (2014) Paracetamol: mechanism of action, applications and safety concern. Acta Pol Pharm Drug Res 71:11–23Google Scholar
  35. Kajiwara M, Kuraku S, Kurokawa T, Kato K, Toda S, Hirose H, Takahashi S, Shibata Y, Iguchi T, Matsumoto T, Miyata T, Miura T, Takahashi Y (2006) Tissue preferential expression of estrogen receptor gene in the marine snail, Thais clavigera. Gen Comp Endocrinol 148:315–326CrossRefGoogle Scholar
  36. Kawahara A, Kobayashi T, Nagata S (1998) Inhibition of Fas-induced apoptosis by Bcl-2. Oncogene 17:2549–2554CrossRefGoogle Scholar
  37. Khan B, Adeleye AS, Burgess RM, Smolowitz R, Russo SM, Ho KT (2019) A 72-h exposure study with eastern oysters (Crassostrea virginica) and the nanomaterial graphene oxide. Environ Toxicol Chem 38:820–830CrossRefGoogle Scholar
  38. Kiss T (2010) Apoptosis and its functional significance in molluscs. Apoptosis 15:313–321CrossRefGoogle Scholar
  39. Koagouw W, Ciocan C (2018) Impact of metformin and increased temperature on blue mussels Mytilus edulis - evidence for synergism. J Shellfish Res 37:467–474CrossRefGoogle Scholar
  40. Lattier DL, Gordon DA, Burks DJ, Toth GP (2001) Vitellogenin gene transcription: a relative quantitative exposure indicator of environmental estrogens. Environ Toxicol Chem 20:1979–1985CrossRefGoogle Scholar
  41. Liu P, Miao J, Song Y, Pan L, Yin P (2017) Effects of 2,2',4,4'-tetrabromodipheny ether (BDE-47) on gonadogenesis of the manila clam Ruditapes philippinarum. Aquat Toxicol 193:178–186CrossRefGoogle Scholar
  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  43. Lolić A, Paíga P, Santos LHMLM, Ramos S, Correia M, Delerue-Matos C (2015) Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: occurrence and environmental risk. Sci Total Environ 508:240–250CrossRefGoogle Scholar
  44. Martinović-Weigelt D, Mehinto AC, Ankley GT, Berninger JP, Collette TW, Davis JM, Denslow ND, Durhan EJ, Eid E, Ekman DR, Jensen KM, Kahl MD, LaLone CA, Teng Q, Villeneuve DL (2017) Derivation and evaluation of putative adverse outcome pathways for the effects of cyclooxygenase inhibitors on reproductive processes in female fish. Toxicol Sci 156:344–361CrossRefGoogle Scholar
  45. Matozzo V, Marin MG (2005) Can 4-nonylphenol induce vitellogenin-like proteins in the clam Tapes philippinarum? Environ Res 97:43–49CrossRefGoogle Scholar
  46. Matozzo V, Gagné F, Marin MG, Ricciardi F, Blaise C (2008) Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environ Int 34:531–545CrossRefGoogle Scholar
  47. Matsumoto T, Nakamura AM, Mori K, Akiyama I, Hirose H, Takahashi Y (2007) Oyster estrogen receptor: CDNA cloning and immunolocalization. Gen Comp Endocrinol 151:195–201CrossRefGoogle Scholar
  48. Muncke J, Eggen RIL (2006) Vitellogenin 1 mRNA as an early molecular biomarker for endocrine disruption in developing zebrafish (Danio rerio). Environ Toxicol Chem 25:2734–2741CrossRefGoogle Scholar
  49. Neves RAF, Santiago TC, Carvalho WF, Silva ES, da Silva PM, Nascimento SM (2019) Impacts of the toxic benthic dinoflagellate Prorocentrum lima on the brown mussel Perna perna: shell-valve closure response, immunology, and histopathology. Mar Environ Res 146:35–45CrossRefGoogle Scholar
  50. Niemuth NJ, Jordan R, Crago J, Blanksma C, Johnson R, Klaper RD (2014) Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environ Toxicol Chem 34:291–296CrossRefGoogle Scholar
  51. Nödler K, Voutsa D, Licha T (2014) Polar organic micropollutants in the coastal environment of different marine systems. Mar Pollut Bull 85:50–59CrossRefGoogle Scholar
  52. Nunes B, Verde MF, Soares AMVM (2015) Biochemical effects of the pharmaceutical drug paracetamol on Anguilla anguilla. Environ Sci Pollut Res 22:11574–11584CrossRefGoogle Scholar
  53. Olatunde JO, Chimezie A, Tolulope B, Aminat TT (2014) Determination of pharmaceutical compounds in surface and underground water by solid phase extraction-liquid chromatography. J Environ Chem Ecotoxicol 6:20–26CrossRefGoogle Scholar
  54. Ortiz-Zarragoitia M, Cajaraville MP (2006) Biomarkers of exposure and reproduction-related effects in mussels exposed to endocrine disruptors. Arch Environ Contam Toxicol 50:361–369CrossRefGoogle Scholar
  55. Paíga P, Lolić A, Hellebuyck F, Santos LHMLM, Correia M, Delerue-Matos C (2015) Development of a SPE–UHPLC–MS/MS methodology for the determination of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawater. J Pharm Biomed Anal 106:61–70CrossRefGoogle Scholar
  56. Parolini M, Binelli A, Cogni D, Provini A (2010) Multi-biomarker approach for the evaluation of the cyto-genotoxicity of paracetamol on the zebra mussel (Dreissena polymorpha). Chemosphere 79:489–498CrossRefGoogle Scholar
  57. Parolini M, Pedriali A, Binelli A (2013) Application of a biomarker response index for ranking the toxicity of five pharmaceutical and personal care products (PPCPs) to the bivalve Dreissena polymorpha. Arch Environ Contam Toxicol 64:439–447CrossRefGoogle Scholar
  58. Pereira CDS, Maranho LA, Cortez FS, Pusceddu FH, Santos AR, Ribeiro DA, Cesar A, Guimarães LL (2016) Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone. Sci Total Environ 548-549:148–154CrossRefGoogle Scholar
  59. Pirrone C, Rossi F, Cappello S, Borgese M, Mancini G, Bernardini G, Gornati R (2018) Evaluation of biomarkers in Mytilus galloprovincialis as an integrated measure of biofilm-membrane bioreactor (BF-MBR) system efficiency in mitigating the impact of oily wastewater discharge to marine environment: a microcosm approach. Aquat Toxicol 198:49–62CrossRefGoogle Scholar
  60. Porte C, Janer G, Lorusso LC, Ortiz-Zarragoitia M, Cajaraville MP, Fossi MC, Canesi L (2006) Endocrine disruptors in marine organisms: Approaches and perspectives. Comp Biochem Physiol C: Toxicol Pharmacol 143:303–315Google Scholar
  61. Puinean AM, Labadie P, Hill EM, Osada M, Kishida M, Nakao R, Novillo A, Callard IP, Rotchell JM (2006) Laboratory exposure to 17β-estradiol fails to induce vitellogenin and estrogen receptor gene expression in the marine invertebrate Mytilus edulis. Aquat Toxicol 79:376–383CrossRefGoogle Scholar
  62. Rehnstam-Holm A-S, Hernroth B (2005) Shellfish and public health: a Swedish perspective. Ambio 34:139–144CrossRefGoogle Scholar
  63. Rittschof D, McClellan-Green P (2005) Molluscs as multidisciplinary models in environment toxicology. Mar Pollut Bull 50:369–373CrossRefGoogle Scholar
  64. Roberts E, Delgado Nunes V, Buckner S, Latchem S, Constanti M, Miller P, Doherty M, Zhang W, Birrell F, Porcheret M, Dziedzic K, Bernstein I, Wise E, Conaghan PG (2016) Paracetamol: not as safe as we thought? A systematic literature review of observational studies. Ann Rheum Dis 75:552–559CrossRefGoogle Scholar
  65. Salvesen GS, Walsh CM (2014) Functions of caspase 8: the identified and the mysterious. Semin Immunol 26:246–252CrossRefGoogle Scholar
  66. Scott PD, Bartkow M, Blockwell SJ, Coleman HM, Khan SJ, Lim R, McDonald JA, Nice H, Nugegoda D, Pettigrove V, Tremblay LA, Warne MSJ, Leusch FDL (2014) A national survey of trace organic contaminants in Australian rivers. J Environ Qual 43:1702–1702CrossRefGoogle Scholar
  67. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470CrossRefGoogle Scholar
  68. Solé M, Shaw JP, Frickers PE, Readman JW, Hutchinson TH (2010) Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal Bioanal Chem 396:649–656CrossRefGoogle Scholar
  69. Star K, Choonara I (2015) How safe is paracetamol? Arch Dis Child 100:73–74CrossRefGoogle Scholar
  70. Thomas-Jones E, Thorpe K, Harrison N, Thomas G, Morris C, Hutchinson T, Woodhead S, Tyler C (2003) Dynamics of estrogen biomarker responses in rainbow trout exposed to 17β-estradiol and 17α-ethinylestradiol. Environ Toxicol Chem 22:3001–3008CrossRefGoogle Scholar
  71. Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301:1714–1717CrossRefGoogle Scholar
  72. Tian J, Gong H, Thomsen GH, Lennarz WJ (1997) Gamete interactions in Xenopus laevis: identification of sperm binding glycoproteins in the egg vitelline envelope. J Cell Biol 136:1099CrossRefGoogle Scholar
  73. Togola A, Budzinski H (2008) Multi-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177:150–158CrossRefGoogle Scholar
  74. Velisek J, Stara A, Zuskova E, Kubec J, Buric M, Kouba A (2018) Chronic toxicity of metolachlor OA on growth, ontogenetic development, antioxidant biomarkers and histopathology of early life stages of marbled crayfish. Sci Total Environ 643:1456–1463CrossRefGoogle Scholar
  75. Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A (2007) The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Physiol C: Toxicol Pharmacol 146:281–300Google Scholar
  76. Warwick C (2008) Paracetamol and fever management. J R Soc Promot Heal 128:320–323CrossRefGoogle Scholar
  77. Winker M, Faika D, Gulyas H, Otterpohl R (2008) A comparison of human pharmaceutical concentrations in raw municipal wastewater and yellow water. Sci Total Environ 399:96–104CrossRefGoogle Scholar
  78. Xia L, Zheng L, Zhou JL (2017) Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behaviour in developing zebrafish (Danio rerio). Chemosphere 182:416–425CrossRefGoogle Scholar
  79. Xu JJ, Hendriks BS, Zhao J, de Graaf D (2008) Multiple effects of acetaminophen and p38 inhibitors: towards pathway toxicology. FEBS Lett 582:1276–1282CrossRefGoogle Scholar
  80. Yang CW, Faulkner GR, Wahba IM, Christianson TA, Bagby GC, Jin DC, Abboud HE, Andoh TF, Bennett WM (2002) Expression of apoptosis-related genes in chronic cyclosporine nephrotoxicity in mice. Am J Transplant 2:391–399CrossRefGoogle Scholar
  81. Yavaşoğlu A, Özkan D, Güner A, Katalay S, Oltulu F, Yavaşoğlu NÜK (2016) Histopathological and apoptotic changes on marine mussels Mytilus galloprovincialis (Lamark, 1819) following exposure to environmental pollutants. Mar Pollut Bull 109:184–191CrossRefGoogle Scholar
  82. Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G (2007) Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 66:1057–1069CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK
  2. 2.Bitung Marine Life Conservation Unit, Research Center for OceanographyIndonesian Institute of SciencesBitungIndonesia

Personalised recommendations