Advertisement

Assessment of the biochemical and nutritional values of Venerupis decussata from Tunisian lagoons submitted to different anthropogenic ranks

  • Safa BejaouiEmail author
  • Mehdi Bouziz
  • Feriel Ghribi
  • Imene Chetoui
  • M’hamed EL Cafsi
Research Article
  • 12 Downloads

Abstract

The present study aimed to evaluate the biochemical status of Venerupis decussata collected seasonally from two Tunisian coastline lagoons (Ghar El Melh and Boughrara) submitted to different anthropogenic levels. Trace elements were significantly higher in clams from Boughrara, especially during the warm season. Fatty acids, proximate compositions, and nutritional value of both clam populations were higher, appearing to be the best for human consumption principally during the spring season. The principal component analysis was determined, including phospholipids and reserve lipids, revealing a great variation with the exogenous and endogenous factors. Generally, clams from Boughrara had a significant alteration in biochemical composition principally due to the anthropogenic levels and physicochemical fluctuation of this lagoon. Our results reflected the healthy benefit of clam consumption and the use of energy reserves and essential fatty acids as a great biomarker to assess ecological risk in lagoons and other coastal ecosystems.

Keywords

Fatty acids Lipid classes Metal bioaccumulation Tunisian lagoons Venerupis decussata 

Abbreviations

AI

Atherogenicity index

ARA

Arachidonic acid

BHT

Butylated hydroxyl toluene

C16:0

Palmitic acid

C16:1

Palmitoleic acid

C18:0

Linoleic acid

C18:1

Oleic acid

C18:2n-6

Linoleic acid

C18:n-3

Linolenic acid

Ca

Calcium

Car

Carotenoids

Cd

Cadmium

CHD

Coronary heart diseases

Chl a

Chlorophyll a

CI

Condition index

CPG

Gas chromatography

DHA

Docosahexaenoic acid

EPA

Eicosapentaenoic acid

FA

Fatty acids

FAMEs

Fatty acid methyl esters

GI

Gonadic index

h/H

Hypocholesterolemic and hypercholesterolemic

H2O2

Hydrogen peroxide

H2SO4

Sulfuric acid

HNO3

Nitric acid

L1

Ghar El Melh lagoon

L2

Boughrara lagoon

Mg

Magnesium

MUFA

Monounsaturated fatty acids

NaOCH3

Sodium methylate

NQI

Nutritional quality index

Pb

Lead

PCA

Principal component analysis

PUFA

Polyunsaturated fatty acids

S psu

Salinity

SFA

Saturated fatty acids

SPM

Suspended matter

T °C

Temperature

TI

Thrombogenicity index

TLC

Thin-layer chromatography

V. decussata

Venerupis decussata

Notes

Acknowledgments

This work was supported by the Laboratory of Ecology, Biology, and Physiology of Aquatic Organisms, Department of Biology (LEBPAO; LU 18 ES 41), University of Tunis El Manar, Faculty of Science of Tunis. The authors are grateful to Mr. Hsan MEJARI for his technical assistance. We gratefully recognize the support of all members of the LEBPAO concerning their great help in the analysis. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

The regular recommendations for animal experiments prepared by the department and the university were implicated in our study.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Al-Yousuf MH, El-Shahawi MS, Al-Ghais SM (2000) Trace metals in liver, skin and muscle of Lethrinus lentjan fish species in relation to body length and sex. Sci. Total. Environ. 256:87–94CrossRefGoogle Scholar
  2. Aminot A, Chaussepied C (1983) Manuel des analyses chimiques en milieu marin. In: CNEXO B (ed) Centre national d’exploitation des océans, France, p 400 2902721102, 9782902721108Google Scholar
  3. Amouroux JC (1980) Etude monographique des siphons de quelques mollusques bivalves : adaptation et morphologie. Océanis 5(1):33–89 Institut Océanographique, ParisGoogle Scholar
  4. Anacleto P, Maulvault AL, Bandarra NM, Repolho T, Nunes ML, Rosa R, Marques A (2014) Effect of warming on protein, glycogen and fatty acid content of native and invasive clams. Food. Res. Inter. 64:439–445.  https://doi.org/10.1016/j.foodres.2014.07.023 CrossRefGoogle Scholar
  5. Aníbal J, Esteves E, Rocha C (2011) Seasonal variations in gross biochemical composition, percentage edibility and condition index of the clam Ruditapes decussatus cultivated in the Ria Formosa (South Portugal). J. Shellfish. Res.  https://doi.org/10.2983/035.030.0104
  6. Ayache F, Thompson JR, Flower RJ, Boujarra A, Rouatbi F, Makina H (2009) Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco), Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia.  https://doi.org/10.1007/s10750-008-9676-6
  7. Azpeitia K, Ferrer L, Revilla M, Pagaldai J, Mendiola D (2016) Growth, biochemical profile, and fatty acid composition of mussel (Mytilus galloprovincialis Lmk.) cultured in the open ocean of the Bay of Biscay (northern Spain). Aqua. 454:95–108.  https://doi.org/10.1016/j.aquaculture.2015.12.022 CrossRefGoogle Scholar
  8. Beccaria M, Costa R, Sullini G, Grasso E, Cacciola F, Dugo P, Mondello L (2015) Determination of the triacylglycerol fraction in fish oil by comprehensive liquid chromatography techniques with the support of gas chromatography and mass spectrometry data. Anal. Bio. Anal. Chem. 407(17):5211–5225.  https://doi.org/10.1007/s00216-015-8718-y CrossRefGoogle Scholar
  9. Bejaoui S, Boussoufa D, Tir M, Haouas-Gharsallah I, Boudawara T, Ghram A, EL Cafsi M, Soudani N (2017) DNA damage and oxidative stress in digestive gland of Venerupis decussata collected from two contrasting habitats in the southern Tunisian coast: biochemical and histopathological studies. Cah. Biol. Mar. 58:123–135.  https://doi.org/10.21411/CBM.A.133C71C1 CrossRefGoogle Scholar
  10. Bejaoui S, Tlahigue K, Chetoui I, Rabeh I, Fouzai C, Trabelsi W, Houas-Gharsallah I, El Cafsi M, Soudani N (2018) Integrated effect of metal accumulation, oxidative stress responses and DNA damage in Venerupis decussata gills collected from two coast Tunisian lagoons. J. Chem. Environ. Biol. Eng. 2(2):44–51.  https://doi.org/10.11648/j.jcebe.20180202.12 CrossRefGoogle Scholar
  11. Bejaoui S, Boussefa D, Telahigue K, Chetoui I, Ghribi F, Rabeh I, El Cafsi M (2019) Geographic variation in fatty acid composition and food source of the commercial clam (Venerupis decussata, Linnaeus, 1758), from Tunisian coasts: trophic links. Grasas Aceites. 70(1):e289.  https://doi.org/10.3989/gya.0580181 CrossRefGoogle Scholar
  12. Ben Aoun Z, Farhat FL, Chouba L, Hadj Ali MS (2007) Investigation on possible chemical pollution of the Boughrara lagoon, south of Tunisia, by chemical wastes. Bull. Inst. Natn. Tech. Mer de Salammbo. V24.Google Scholar
  13. Bille L, Binato G, Cappa V, Toson M, Pozza MD, Arcangeli G, Ricci A, Angeletti R, Piro R (2015) Lead, mercury and cadmium levels in edible marine molluscs and echinoderms from the Veneto region (north-western Adriatic Sea – Italy). Food. Cont. 50:362–370.  https://doi.org/10.1016/j.foodcont.2014.09.018 CrossRefGoogle Scholar
  14. Bongiorno T, Iacumin L, Tubaro F, Marcuzzo E, Sensidoni A, Tulli F (2015) Seasonal changes in technological and nutritional quality of Mytilus galloprovincialis from suspended culture in the Gulf of Trieste (North Adriatic Sea). Food. Chem. 173:355–362.  https://doi.org/10.1016/j.foodchem.2014.10.029 CrossRefGoogle Scholar
  15. Bouaziz M, Bejaoui S, Rabeh I, Besbes R, El Cafsi M (2017) Impact of temperature on sea bass, Dicentrachus labrax, retina: fatty acid composition, expression of rhodopsin and enzymes of lipid and melatonin metabolism. Exp. Eye. Res. 159:87–97CrossRefGoogle Scholar
  16. Brett MT, Muller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic food web processes. Fresh. W. Biol. 38:483–499CrossRefGoogle Scholar
  17. Carvalho GP, De Cavalcante PRS, Castro ACI, De Rojas MOAI (2000) Preliminary assessment of heavy metal levels in Mytella falcata (Bivalvia, Mytilidae) from Bcanga river estuary, Sao Luis, state of Maranjao, northeastern Brazil. Rev. Brasil. Biol. 60:11–16CrossRefGoogle Scholar
  18. Cecchi G, Basini S, Castano C (1985) Méthanolyse rapide des huiles en solvant. Note de laboratoire. Revue Francaise Des Corps Gras 4:163–164Google Scholar
  19. Chakraborty SK (2011) Mangrove ecosystem of Sundarbans, India: biodiversity, ecology, threats and conservation. In: Metras J N (ed) Mangroves: ecology, biology and taxonomy. Nova Publisher, Carbondale, pp 83–112Google Scholar
  20. Chakraborty S, Bhattacharjee P (2017) Supercritical carbon dioxide extraction of melatonin from Brassica campestris: in vitro antioxidant, hypocholesterolemic and hypoglycaemic activities of the extracts. Int. J. Pharm. Sci. Res. 8(6):2486–2495.  https://doi.org/10.13040/IJPSR.0975-8232.8(6).2486-95 CrossRefGoogle Scholar
  21. Chalghmi H, Jean-Paul Bourdineau JP, Haouas Z, Gourves PY, Zrafi I, Saidane-Mosbahi D (2016) Transcriptomic, biochemical, and histopathological responses of the clam Ruditapes decussatus from a metal-contaminated Tunis lagoon. Arch. Environ. Contam. Toxicol. 70:241–256.  https://doi.org/10.1007/s00244-015-0185-0 CrossRefGoogle Scholar
  22. Cherifi H, Chebil-Ajjabi L, Sadok S (2018) Nutritional value of the Tunisian mussel Mytilus galloprovincialis with a special emphasis on lipid quality. Food. Chem. 268:307–314.  https://doi.org/10.1016/j.foodchem.2018.06.075 CrossRefGoogle Scholar
  23. Damak M, Front F, Boubaker-Elleuch B, Kallel M (2019) Benthic foraminiferal assemblages as pollution proxies along the coastal fringe of the Monastir Bay (Tunisia). J. Afr. Earth. Sci. 150:379–388.  https://doi.org/10.1016/j.jafrearsci.2018.11.013 CrossRefGoogle Scholar
  24. Das Sharma S (2019) Risk assessment and mitigation measures on the heavy metal polluted water and sediment of the Kolleru Lake in Andhra Pradesh, India. Poll. 5(1):161–178.  https://doi.org/10.22059/poll.2018.263546.493 CrossRefGoogle Scholar
  25. De Souza MAA, Spencer K, Kloas W, Toffolon M, Zarfl C (2016) Metal fate and effects in estuaries: a review and conceptual model for better understanding of toxicity. Sci. Total. Environ. 541:268–281.  https://doi.org/10.1016/j.scitotenv.2015.09.045 CrossRefGoogle Scholar
  26. Dernekbaşı S, Öksüz A, YeşimÇelik M, Karayücel I, Karayücel S (2015) The fatty acid composition of cultured mussels (Mytilus galloprovincialis Lamarck 1819) in offshore longline system in the Black Sea. J. Aqua. Mar. Biol. 2(6):00049Google Scholar
  27. Dhib A (2015) Contribution à l'étude des successions écologiques du phytoplancton dans la lagune de Ghar El Melh. Biodiversité et Ecologie. Université de Franche-Comté. Français. 〈NNT: 2015BESA2033〉Google Scholar
  28. Dincer T (2006) Differences of Turkish clam (Ruditapes decussates) and Manila clam (Ruditapes philippinarum) according to their proximate composition and heavy metal contents. J. Shell. Res. 25(2).  https://doi.org/10.2983/0730-8000(2006)25[455:dotcrd]2.0.co;2
  29. Domouhtsidou GP, Dimitriadis VK (2001) Lysosomal and lipid alterations in the digestive gland of mussels, Mytilus galloprovincialis (L) as biomarkers of environmental stress. Environ. Poll. 115:123–137CrossRefGoogle Scholar
  30. Dridi S, Romdhane MS, Elcafsi M (2007) Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizerte lagoon. Tunisia. Aqua. 263:238–248.  https://doi.org/10.1016/j.aquaculture.2006.10.028 CrossRefGoogle Scholar
  31. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related 806 substances. Anal. Chem. 28:350–356CrossRefGoogle Scholar
  32. Dupčić-Radić I, Carić M, Najdek M, Jasprica N, Bolotin J, Peharda M, Cetinić B (2014) Biochemical and fatty acid composition of Arcanoae (Bivalvia: Arcidae) from the Mali Ston Bay, Adriatic Sea Mediterranean. Mar.  https://doi.org/10.12681/mms.436
  33. Elgharsalli R, Seguineau C, Arzul I, Aloui-Bejaoui N, Quere C, Moal J (2016) Effect of infection by the protistan parasite Marteilia refringens on the enzyme activity and energy reserves of oyster Ostrea stentina (Payraudeau, 1826) in Tunisia. J. Mar. Biol. Assoc. United. Kingdom. 98(1):161–170.  https://doi.org/10.1017/S0025315416001156 CrossRefGoogle Scholar
  34. Ezgeta-Balic D, Najdek M, Peharda M, Blazina M (2011) Seasonal fatty acid profile analysis to trace origin of food sources of four commercially important bivalves. Aqua. 334-337:89–100.  https://doi.org/10.1016/j.aquaculture.2011.12.041 CrossRefGoogle Scholar
  35. Fernández-Reiriz MJ, Pérez-Camacho A, Delgado M, Labarta U (2007) Dynamics of biochemical components, lipid classes and energy values on gonadal development of R. philippinarum associated with the temperature and ingestion rate. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 147(4):1053–1059.  https://doi.org/10.1016/j.cbpa.2007.03.018 CrossRefGoogle Scholar
  36. Filimonova V, Gonçalves F, Marques JC, De Troch M, Gonçalves AMM (2016) Fatty acid profiling as bioindicator of chemical stress in marine organisms: a review. Ecol. Ind. 67:657–672.  https://doi.org/10.1016/j.ecolind.2016.03.044 CrossRefGoogle Scholar
  37. Fokina NN, Ruokolainen TR, Nemova NN, Bakhmet IN (2013) Changes of blue mussels Mytilus edulis L. lipid composition under cadmium and copper toxic effect. Biol. Trace. Elem. Res. 154:217–225.  https://doi.org/10.1007/s12011-013-9727-3 CrossRefGoogle Scholar
  38. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509Google Scholar
  39. Fradi J (2012) Etude comparée de la reproduction et de la croissance de la palourde Ruditapes decussatus dans deux lagunes tunisiennes : Lagune nord de Tunis et Lagune de Boughrara. Pp145. http://www.inat.tn/sites/default/files/files/Memoires%20de%20mastere%20soutenus/mastere_soutenus_2011-2012.pdf
  40. Fuentes A, Fernàndez-Segovia I, Escriche I, Serra JA (2009) Comparison of physico-chemical parameters and composition of mussels (Mytilus galloprovincialis Lmk.) from different Spanish origins. Food. Chem. 112:295–302CrossRefGoogle Scholar
  41. Gabbott PA (1975) Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In: H. Barnes (ed), Proc. 9th Eur Mar BiolSymp Oban. Aberdeen University Press, Aberdeen, pp. 191-211.Google Scholar
  42. Gallardi D, Mills T, Donnet S, Parrish CC, Murray HM (2017) Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment. J. Sea. Res. 126:37–45.  https://doi.org/10.1016/j.seares.2017.07.001 CrossRefGoogle Scholar
  43. Garaffo MA, Vassallo-Agius R, Nenga Y, Lembo E, Rando R, Maisano R, Dugo G, Giuffrida D (2011) Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product bottarga. Food. Nut. Sci. 2:736–743.  https://doi.org/10.4236/fns.2011.27101 CrossRefGoogle Scholar
  44. Garcia F (1993) Interprétation des stries valvaires pour l’évaluation de la croissance de Ruditapes decussatus L. Ocean. Acta. 16:199–203Google Scholar
  45. Ghribi F, Boussoufa D, Aouini F, Bejaoui S, Chetoui I, Rabeh I, EL Cafsi M (2018) Seasonal variation of biochemical composition of Noah’s ark shells (Arcanoae L. 1758) in Tunisian coastal lagoon in relation to its reproductive cycle and environmental conditions. Aqua. Liv. Res.  https://doi.org/10.1051/alr/2018002
  46. Goncalves AMM, Mesquita AF, Verdelhos T, Coutinho JAP, Marques JC, Goncalves F (2016) Fatty acids’ profiles as indicator of stress induced by of a common herbicide on two marine bivalves species: Cerastoderma edule (Linnaeus, 1758) and Scrobicularia plana (da Costa, 1778). Ecol. Indic. 63:209–218.  https://doi.org/10.1016/j.ecolind.2015.12.006 CrossRefGoogle Scholar
  47. Hall JM, Parrish CC, Thompson RJ (2002) Eicosapentaenoic acid regulates scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol. Bull. 202:201–203.  https://doi.org/10.2307/1543469 CrossRefGoogle Scholar
  48. Hazel JR (1995) Thermal adaptation in biological membranes—is homeoviscous adaptation the explanation? Ann. Rev. Physiol. 57:19–42CrossRefGoogle Scholar
  49. Health Council of the Netherlands (2006) Guidelines for a healthy diet 2006. Publication no. 2006/21, The Hague.Google Scholar
  50. Helali MA, Oueslati W, Zaaboub N, Added A, Aleya L (2016) Bioavailability and assessment of heavy metal pollution in sediment cores off the Mejerda River Delta (Gulf of Tunis): how useful is a multiproxy approach?.Mar. Poll. Bull. 105(1):215–226.  https://doi.org/10.1016/j.marpolbul.2016.02.027 CrossRefGoogle Scholar
  51. Hmida L (2004) Reproduction de la palourde Ruditapes decussatus, en milieu naturel (sud Tunisie) et en milieu contrôlé (écloserie expérimentale) : relation avec le système immunitaire. Pp97. https://www.researchgate.net/publication/237422947_Reproduction_de_la_palourde_Ruditapes_decussatus_en_milieu_naturel_sud_Tunisie_et_en_milieu_controle_ecloserie_experimentale_relation_avec_le_systeme_immunitaire.
  52. Horwitz W, Latimer GW (2005) Official methods of analysis of AOAC international, 18th edn. Association of Official Analytical Chemistry International, MarylandGoogle Scholar
  53. Hosseini AA, Karbassi A, Hassanzadeh BK, Monavari SM, Sekhavatjo MS (2012) Bioaccumulation of trace elements in different tissues of three commonly available fish species regarding their gender, gonadosomatic index, and condition factor in a wetland ecosystem. Environ. Monit. Ass. 184(4):1865–1878.  https://doi.org/10.1007/s10661-011-2085-8 CrossRefGoogle Scholar
  54. Howe P, Meyer B, Record S, Baghurst K (2006) Dietary intake of long-chain omega-3 polyunsaturated fatty acids: contribution of meat sources. Nut. 22(1):47–53.  https://doi.org/10.1016/j.nut.2005.05.009 CrossRefGoogle Scholar
  55. Hussain B, Sultana T, Sultana S, Ahmed Z, Mahboob S (2018) Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats. Saudi. J. Biol. Sci. 25:755–759.  https://doi.org/10.1016/j.sjbs.2018.02.004 CrossRefGoogle Scholar
  56. IOM (Institute of Medicine) (1997) Approaching death: improving care at the end of life. National Academy Press, WashingtonGoogle Scholar
  57. Irisarri J, Fernández-Reiriz MJ, Labarta U (2015) Temporal and spatial variations in proximate composition and condition index of mussels Mytilus galloprovincialis cultured in suspension in a shellfish farm. Aqua. 435(1):207–216.  https://doi.org/10.1016/j.aquaculture.2014.09.041 CrossRefGoogle Scholar
  58. Jebali J, Banni M, Alves E, Almeida DE, Boussetta H (2007) Oxidative DNA damage levels and catalase activity in the clam Ruditapes decussatus as pollution biomarkers of Tunisian marine environment. Environ. Monit. Assess. 124:195–200.  https://doi.org/10.1007/s10661-006-92176 CrossRefGoogle Scholar
  59. Jónasdóttir SH (2019) Fatty acid profiles and production in marine phytoplankton. Mar. Drugs. 17:151.  https://doi.org/10.3390/md17030151 CrossRefGoogle Scholar
  60. Joy M, Chakraborty K (2016) Nutritional qualities of the low value bivalve mollusks Paphia malabarica and Villorita cyprinoids at the estuarine waters of southwestern coast of India. J. Aqua. Food. Prod. Technol.  https://doi.org/10.1080/10498850.2015.1092486
  61. Kang JX (2011) The omega-6/omega-3 fatty acid ratio in chronic diseases: animal models and molecular aspects. World. Rev. Nutr. Diet. 102:22–29CrossRefGoogle Scholar
  62. Kharroubi A, Gargouri D, Baati H, Azri C (2012a) Assessment of sediment quality in the Mediterranean Sea–Boughrara lagoon exchange areas (southeastern Tunisia): GIS approach-based chemometric methods. Environ. Monit. Assess. 184:4001–4014.  https://doi.org/10.1007/s10661-011-2239-8 CrossRefGoogle Scholar
  63. Kharroubi A, Gzam M, Jedui Y (2012b) Anthropogenic and natural effects on the water and sediments qualities of costal lagoons: case of the Boughrara lagoon (southeast Tunisia). Environ. Earth. Scien. 67(4).  https://doi.org/10.1007/s12665-012-1551-0
  64. Khedhri I, Djabou H, Afli A (2015) Trophic and functional organization of the benthic macrofauna in the lagoon of Boughrara-Tunisia (SW Mediterranean Sea). J. Mar. Biol. Ass. Uni. King. 95:647–659CrossRefGoogle Scholar
  65. Khedhri I, Atoui A, Brahim M, Afli A (2017) Contribution a l’étude de la structure trophique et de l’etat ecologique du benthos au nord de la lagune de Ghar el Melh. Bull. Inst. Natn. Tech. Mer de Salammbo. V44.Google Scholar
  66. Kim SC, Adesogan AT, Badinga L, Staples CR (2007) Effects of dietary n-6:n-3 fatty acid ratio on feed intake, digestibility, and fatty acid profiles of the ruminal contents, liver, and muscle of growing lambs. J. An. Sci. 85(3):706–716CrossRefGoogle Scholar
  67. Kozhina VP, Terekhova TA, Svetashev VI (1978) Lipid composition of gametes and embryos of the sea urchin Strongylocentrotus intermedius at early stages of development. Devlop. Biol. 62:512–517CrossRefGoogle Scholar
  68. Kwaansa-Ansah EE, Nkrumah D, Nti SO, Opoku F (2019) Adsorption of heavy metals (Cu, Mn, Fe and Ni) from surface water using Oreochromis niloticus scales. Poll. 5(1):115–122.  https://doi.org/10.22059/poll.2018.259347.454 CrossRefGoogle Scholar
  69. Louiz I, Palluel O, Ben-Attia M, Aït-Aïss S, Ben Hassine OK (2018) Liver histopathology and biochemical biomarkers in Gobius niger and Zosterisessor ophiocephalus from polluted and non-polluted Tunisian lagoons (southern Mediterranean Sea). Mar. Poll. Bull. 128:248–258.  https://doi.org/10.1016/j.marpolbul.2018.01.028 CrossRefGoogle Scholar
  70. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J. Biol.Chem 193:265–275Google Scholar
  71. Lund I, Rodriguez C, Izquierdo MS, El Kertaoui N (2019) Influence of salinity and linoleic or α-linolenic acid based diet on ontogenetic development and metabolism of unsaturated fatty acids in pike perch larvae (Sander lucioperca). Aqu.  https://doi.org/10.1016/j.aquaculture.2018.10.061
  72. Mahanty A, Ganguly S, Verma A, Sahoo S, Mitra P, Paria P, Sharma AP, Singh BK, Mohanty BP (2014) Nutrient profile of small indigenous fish Puntius sophore: proximate composition, amino acid, fatty acid and micronutrient profiles. Nat. A. Sci. Let. 37:39–44.  https://doi.org/10.1007/s40009-013-0186-3 CrossRefGoogle Scholar
  73. Marques A, Teixeira B, Barrento S, Anacleto P, Carvalho ML, Nunes ML (2010) Chemical composition of atlantic spider crab Maja brachydactyla: human health implication. J. Food. Comp. Anal. 23:230–237.  https://doi.org/10.1016/j.jfca.2009.10.007 CrossRefGoogle Scholar
  74. Merdzhanova A, Dobreva DA, Georgieva S (2016) Nutritional evaluation of aquaculture mussels (M. galloprovincialis) from the Black Sea, Bulgaria. An. Chem 27:1–7.  https://doi.org/10.1515/auoc-2016-0007 CrossRefGoogle Scholar
  75. Mesquita AF, Gonçalves F, Verdelhos T, Marques JC, Gonçalves AMM (2018) Fatty acids profiles modifications in the bivalves Cerastoderma edule and Scrobicularia plana in response to copper sulphate. Ecol. Ind. 85:318–328.  https://doi.org/10.1016/j.ecolind.2017.10.007 CrossRefGoogle Scholar
  76. Moussa M, Baccar L, Ben Khemis R (2005) La lagune de Ghar El Melh : Diagnostic écologique et perspectives d'aménagement hydraulique. J. Water. Sci. 18:13–26.  https://doi.org/10.7202/705573ar CrossRefGoogle Scholar
  77. Mozaffarian D, Wu JHY (2012) (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J. Nut. Mar 142(3):614S–625S.  https://doi.org/10.3945/jn111.149633 CrossRefGoogle Scholar
  78. Napolitano GE, Ackman RG (1992) Anatomical distributions and temporal variations of lipid classes in sea scallops Placopecten magellanicus (Gmelin) from Georges Bank (Nova Scotia). Comp. Biochem. Physiol. 103:645–650Google Scholar
  79. Narváez M, Freites L, Guevara M, Mendoza J, Guderley H, Lodeiros CJ, Salazar G (2008) Food availability and reproduction affects lipid and fatty acid composition of the brown mussel, Perna perna, raised in suspension culture. Comp. Biochem. Physiol. Part B. 149:293–302CrossRefGoogle Scholar
  80. National Food and Health Plan for Belgium (2005) Brussels: Federal Public Service Health, Food Chain Safety and Environment.Google Scholar
  81. Nicholson S, Lamb PKS (2005) Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Pernaviridis (Mytilidae: Bivalvia). Environ. Inter. 1:121–132.  https://doi.org/10.1016/j.envint.2004.05.007 CrossRefGoogle Scholar
  82. Ojea J, Pazos AJ, Martinez D, Novoa S, Sanchez JL, Abad M (2004) Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle. Aqua. 238:451–468.  https://doi.org/10.1016/j.aquaculture.2004.05.022 CrossRefGoogle Scholar
  83. Okumus I, Stirling HP (1998) Seasonal variations in the meat weight, condition index and biochemical composition of mussels (Mytilus edulis L.) in suspended culture in two Scottish sea lochs. Aqua.  https://doi.org/10.1016/S0044-8486
  84. Olsen RE, Henderson RJ (1989) The rapid analysis of neutral and polar lipids using double-development HPTLC and scanning densiometry. J. Exp. Mar. Biol. Ecol. 129(2):189–197.  https://doi.org/10.1016/0022-0981(89)90056-7 CrossRefGoogle Scholar
  85. Ovissipour M, Rasco B, Tang J, Sablani SS (2013) Kinetics of quality changes in whole blue mussel (Mytilus edulis) during pasteurization. Food. Res. Int. 53:141–148.  https://doi.org/10.1016/j.foodres.2013.04.029 CrossRefGoogle Scholar
  86. Pazos AJ, Sanchez JL, Roman G, Perez-Paralle ML, Abad M (2003) Seasonal changes in lipid classes and fatty acid composition in the digestive gland of Pecten maximus. Comp. Biochem. Physiol. Part B. 134:367–380.  https://doi.org/10.1016/S1096-4959(02)00286-5 CrossRefGoogle Scholar
  87. Pereira H, Barreira L, Custódio L, Alrokayan S, Mouffouk F, Varela J, Abu-Salah MK, Ben-Hamadou R (2013) Isolation and fatty acid profile of selected microalgae strains from the Red Sea for biofuel production. Energies. 6(6):2773–2783.  https://doi.org/10.3390/en6062773 CrossRefGoogle Scholar
  88. Perrat E, Couzinet-Mossion A, Tankoua OF, Amiard-Triquet C, Wielgosz-Collin G (2013) Variation of content of lipid classes, sterols and fatty acids in gonads and digestive glands of Scrobicularia plana in relation to environment pollution levels. Ecotoxicol. Environ. Safety. 90:112–120.  https://doi.org/10.1016/j.ecoenv.2012.12.019 CrossRefGoogle Scholar
  89. Pitacco V, Carl MM, Ferrari R, Munaria C (2018) Heavy metals, OCPs, PAHs, and PCDD/Fs contamination in surface sediments of a coastal lagoon (Valli di Comacchio, NW Adriatic, Italy): long term trend (2002–2013) and effect on benthic community. Mar. Poll. Bull. 135:1221–1229.  https://doi.org/10.1016/j.marpolbul.2018.08.057 CrossRefGoogle Scholar
  90. Prato E, Biandolino F, Parlapiano I, Papa L, Kelly M, Fanelli G (2018) Bioactive fatty acids of three commercial scallop species. Inter. J. Food. Pro. 21:519–532.  https://doi.org/10.1080/10942912.2018.1425703 CrossRefGoogle Scholar
  91. Ricardo F, Maciel E, Domingues MD, Ricardo C (2017) Spatio-temporal variability in the fatty acid profile of the adductor muscle of the common cockle Cerastoderma edule and its relevance for tracing geographic origin. Food. Control. 81:173–180.  https://doi.org/10.1016/j.foodcont.2017.06.005 CrossRefGoogle Scholar
  92. Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto J, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl. Environ. Microbiol. 73:110–116.  https://doi.org/10.1128/AEM.01360-06 CrossRefGoogle Scholar
  93. Ruiz-Fernández AC, Wu RSS, Lau TC, Pérez-Bernal LH, Sánchez-Cabeza JA, Chiu JMY (2018) A comparative study on metal contamination in Estero de Urias lagoon, Gulf of California, using oysters, mussels and artificial mussels: implications on pollution monitoring and public health risk. Environ. Poll. 243:197–205.  https://doi.org/10.1016/j.envpol.2018.08.047 CrossRefGoogle Scholar
  94. Silva CO, Simões T, Novais SC, Pimparel I, Granada L, Soares AVM, Barata C, Lemos MFL (2017) Fatty acid profile of the sea snail Gibbula umbilicalis as a biomarker for coastal metal pollution. Sci. Total. Environ. 586:542–550.  https://doi.org/10.1016/j.scitotenv.2017.02.015 CrossRefGoogle Scholar
  95. Sobha K, Poornima A, Harini P, Veeraiah KA (2007) Study on biochemical changes in the fresh water fish, Catlacatla (Hamilton) exposed to the heavy metal toxicant cadmium chloride Kathmandu University. J. Sci. Eng. Technol. 1:1–11Google Scholar
  96. Strohmeier T, Duinker A, Lie O (2000) Seasonal variations in chemical composition of the female gonad and storage organs in Pecten maximus (L.) suggesting that somatic and reproductive growth are separated in time. J. Shell. Res. 19:741–747Google Scholar
  97. Talbi A, Kerchich Y, Kerbachi R, Boughedaoui M (2017) Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers. Algeria. Environ. Poll. 232:252–263.  https://doi.org/10.1016/j.envpol.2017.09.041 CrossRefGoogle Scholar
  98. Testi S, Bonaldo A, Gatta PP, Badiani A (2006) Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food. Chem. 98:104–111CrossRefGoogle Scholar
  99. Thyrring J, Juhl BK, Holmstrup M, Blicher ME, Sejr MK (2015) Does acute lead (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland? Ecotoxicol. 24:2036–2042.  https://doi.org/10.1007/s10646-015-1539-0 CrossRefGoogle Scholar
  100. Tocher DR, Sargent JR (1984) Studies on triacylglycerol, wax ester and sterol ester hydrolases in intestinal caeca of rainbow trout (Salmo gairdneri) fed diets rich in triacylglycerols and wax esters. Comp. Biochem. Physiol. 77:561–571Google Scholar
  101. Turan H, Sönmez G, Kaya Y (2007) Fatty acid profile and proximate composition of the thornback ray (Raja clavata L. 1758) from the Sinop coast in the Black Sea. J. Fish. Sci. 1:97–103Google Scholar
  102. Ulbricht TLV, Southgate DAT (1991) Coronary heart disease: seven dietary factors. Lancet. 338:985–992CrossRefGoogle Scholar
  103. USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth ed. US Environmental Protection Agency, Office of Water, Washington, DC (EPA-821-R-02-012).Google Scholar
  104. Usero J, Blez-Regalado EG, Gracia I (1997) Trace metals in the bivalve mollusks Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of southern Spain. Environ. Inter. 23:291–298CrossRefGoogle Scholar
  105. Vargasmachuca SGC, Ponce-Palafox J, Arambul-Munoz E, Lopez-Gomez C, Arredondo-Figueroa JL, Spanopoulos-Herandez M (2017) The combined effects of salinity and temperature on the proximate composition and energetic value of spotted rose snapper Lutjanus guttatus (Steindachnar, 1869). Lat. Am. J. Aquat. Res. 45:1054–1058CrossRefGoogle Scholar
  106. Velez C, Figueira E, Soares AMVM, Freitas R (2016) Accumulation and sub-cellular partitioning of metals and As in the clam Venerupis corrugata: different strategies towards different elements. Chem. 156:128–134.  https://doi.org/10.1016/j.chemosphere.2016.04.067 CrossRefGoogle Scholar
  107. Ventrella V, Pirini M, Pagliarani A, Trombetti F, Pia M, Anna M, Borgatti R (2007) Effect of temporal and geographical factors on fatty acid composition of M. galloprovincialis from the Adriatic Sea. Comp. Biochem. Physiol. Part B. Biochem. Mol. Biol. 149(2):241–250.  https://doi.org/10.1016/j.cbpb.2007.09.012 CrossRefGoogle Scholar
  108. Viana LF, Súarez YR, Cardoso CAL, Crispim BDA, Carvalho DNC, Grisolia AB, Lima-Junior SE (2018) The response of Neotropical fish species (Brazil) on the water pollution: metal bioaccumulation and genotoxicity. Arch. Environ. Contam. Toxicol. 75:476–485.  https://doi.org/10.1007/s00244-018-0551-9 CrossRefGoogle Scholar
  109. Walne PR (1979) Experiments on the culture in the sea of the butterfish Venerupis decussata L. Aqua. 8:371–381CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Ecology, Biology and Physiology of Aquatic Environment, Biology Department, Faculty of Science of TunisUniversity of Tunis El ManarTunisTunisia

Personalised recommendations