Advertisement

The bibliometric analysis and review of dioxin in waste incineration and steel sintering

  • Yi Xing
  • Hui Zhang
  • Wei SuEmail author
  • Qunhui Wang
  • Haibin Yu
  • Jiaqing Wang
  • Rui Li
  • Changqing Cai
  • Zhiliang Ma
Review Article
  • 60 Downloads

Abstract

Facing the common treatment problems of dioxin whose major sources come from waste incineration and steel sintering, we handled a massive literature dataset from the Web of Science database and analyzed the research hotspot and development trend in this field in the past 40 years by bibliometric method. The result indicates that the field of dioxins generated from waste incineration and steel sintering has entered a stage of rapid development since 1990. China occupies a leading position in terms of comprehensive strength with the largest publications output as well as a greater influence in recent years. The most productive institutions and journals are Zhejiang University and Chemosphere, respectively. In addition, the most commonly used keywords in statistical analysis are “fly ash,” “emission control,” “risk assessment,” “congener profile,” “formation mechanisms,” “sources,” “catalysis,” and “inhibition,” which reflects the current main research direction in this field. The similarities and differences of dioxins generated in waste incineration and steel sintering are reviewed in this paper, which will provide guidance for the future research.

Keywords

Dioxin Sintering process Waste incineration Bibliometric analysis 

Notes

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2017YFC0210300), the National Natural Science Foundation of China (Grant No. 51770438), the National Science Foundation for Young Scientists of China (Grant No. 21707007), Beijing Science and Technology Project (No. D161100004516001), Beijing Nova Program (Z171100001117084), and Open fund of National Engineering Laboratory for Mobile Source Emission Control Technology (NELM2017A14). In addition, we would like to acknowledge Yuhshan Ho, who has taught us the full analyzing skill of this study.

References

  1. Addink R, Drijver DJ, Olie K (1991) Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in the carbon/fly ash system. Chemosphere 23:1205–1211.  https://doi.org/10.1016/00456535(91)90145-4 CrossRefGoogle Scholar
  2. Addink R, Paulus RHWL, Olie K (1996) Prevention of polychlorinated dibenzo-p-dioxins/dibenzofu-rans formation on municipal waste incinerator fly ash using nitrogen and sulfur compounds. Environ Sci Technol 30:2350–2354.  https://doi.org/10.1021/es9508075 CrossRefGoogle Scholar
  3. Akehata T (1998) Energy recovery. Wiley Online Library 1:359–373.  https://doi.org/10.1002/masy.19981350135 CrossRefGoogle Scholar
  4. Altwicker E, Konduri R, Lin C, Milligan M (1992) Rapid formation of polychlorinated dioxins/furans in the post combustion region during heterogeneous combustion. Chemosphere 25:1935–1944.  https://doi.org/10.1016/0045-6535(92)90032-M CrossRefGoogle Scholar
  5. Anderson DR, Fisher R (2002) Sources of dioxins in the United Kingdom: the steel industry and other sources. Chemosphere 46:371–381.  https://doi.org/10.1016/S0045-6535(01)00178-3 CrossRefGoogle Scholar
  6. Black RR et al (2016) Characterization of gas and particle emissions from laboratory burns of peat. Atmos Environ 132:49–57.  https://doi.org/10.1016/j.atmosenv.2016.02.024 CrossRefGoogle Scholar
  7. Born J, Louw R, Mulder P (1989) Formation of dibenzodioxins and dibenzofurans in homogenous gas-phase reactions of phenols. Chemosphere 19:401–406.  https://doi.org/10.1016/0045-6535(89)90342-1 CrossRefGoogle Scholar
  8. Braun T, Schubert A, Zsindely S (1997) Nanoscience and nanotecnology on the balance. Scientometrics 38:321–325.  https://doi.org/10.1007/BF02457417 CrossRefGoogle Scholar
  9. Brubaker WW, Hites RA (1997) Polychlorinated dibenzo-p-dioxins and dibenzofurans: gas-phase hydroxyl radical reactions and related atmospheric removal. Environ Sci Technol 31:1805–1810.  https://doi.org/10.1021/es960950d CrossRefGoogle Scholar
  10. Brzuzy LP, Hites RA (1996) Global mass balance for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 30:1797–1804.  https://doi.org/10.1021/es950714n CrossRefGoogle Scholar
  11. Buekens A, Cornelis E, Huang H, Dewettinck T (2000) Fingerprints of dioxin from thermal industrial processes. Chemosphere 40:1021–1024.  https://doi.org/10.1016/S0045-6535(99)00348-3 CrossRefGoogle Scholar
  12. Buekens A, Stieglitz L, Hell K, Huang H, Segers P (2001) Dioxins from thermal and metallurgical processes: recent studies for the iron and steel industry. Chemosphere 42:729–735.  https://doi.org/10.1016/S0045-6535(00)00247-2 CrossRefGoogle Scholar
  13. Bullot L, Abda MB, Simon-Masseron A, Jean Daou T, Chaplais G, Nouali H, Schäf O, Zerega Y, Fiani E, Patarin J (2017) Dioxin and 1,2-dichlorobenzene adsorption in aluminosilicate zeolite beta. Adsorption 23:101–112.  https://doi.org/10.1007/s10450-016-9828-3 CrossRefGoogle Scholar
  14. Chang YM, Fan WP, Dai WC, Hsi HC, Wu CH, Chen CH (2011) Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators. J Hazard Mater 192:521–529.  https://doi.org/10.1016/j.jhazmat.2011.05.055 CrossRefGoogle Scholar
  15. Chen T, Yan JH, Lu SY, Li XD, Gu YL, Dai HF, Ni MJ, Cen KF (2008) Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China. J Hazard Mater 150:510–514.  https://doi.org/10.1016/j.jhazmat.2007.04.131 CrossRefGoogle Scholar
  16. Chi KH, Chang MB, Chang-Chien GP, Lin C (2005) Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan. Sci Total Environ 347:148–162.  https://doi.org/10.1016/j.scitotenv.2004.12.032 CrossRefGoogle Scholar
  17. Christmann W, Kasiske D, Klöppel KD, Partscht H, Rotard W (1989) Combustion of polyvinylchloride—an important source for the formation of PCDD/PCDF. Chemosphere 19:387–392.  https://doi.org/10.1016/0045-6535(89)90340-8 CrossRefGoogle Scholar
  18. Cieplik MK, Carbonell JP, Muñoz C, Baker S, Krüger S, Liljelind P, Marklund S, Louw R (2003) On dioxin formation in iron ore sintering. Environ Sci Technol 37:3323–3331.  https://doi.org/10.1021/es026292g CrossRefGoogle Scholar
  19. Cui YY, Yang GH, Xiao GH, Zhou JH, Ding GZ, Pan XJ (2017) Adsorption of dioxin by bag filter plus powdered activated carbon. Water Air Soil Poll.  https://doi.org/10.1007/s11270-017-3337-1
  20. Czuczwa JM, Hites RA (1984) Environmental fate of combustion-generated polychlorinated dioxins and furans. Environ Sci Technol 18:444–450.  https://doi.org/10.1021/es00124a010 CrossRefGoogle Scholar
  21. Dickson L, Lenoir D, Hutzinger O, Naikwadi K, Karasek F (1989) Inhibition of chlorinated dibenzo-p-dioxin formation on municipal incinerator fly ash by using catalyst inhibitors. Chemosphere 19:1435–1445.  https://doi.org/10.1016/0045-6535(89)90092-1 CrossRefGoogle Scholar
  22. Domingo JL, Agramunt MC, Nadal M, Schuhmacher M, Corbella J (2002) Health risk assessment of PCDD/PCDF exposure for the population living in the vicinity of a municipal waste incinerator. Arch Environ Con Tox 43:461–465.  https://doi.org/10.1007/s00244-002-1280-6 CrossRefGoogle Scholar
  23. Eisen P, Husig KR, Kofler A (2004) Construction of the exhaust recycling facilities at a sintering plant. Stahl Eisen 124:37–40Google Scholar
  24. Everaert K, Baeyens J (2002) The formation and emission of dioxins in large scale thermal processes. Chemosphere 46:439–448.  https://doi.org/10.1016/S0045-6535(01)00143-6 CrossRefGoogle Scholar
  25. Fan XY, Yang HS, Tian W, Nie AM, Hou TF, Qiu FM, Zhang XB (2011) Catalytic oxidation of chlorobenzene over MnOx/Al2O3-carbon nanotubes composites. Catal Lett 141:158–162.  https://doi.org/10.1007/s10562-010-0450-9 CrossRefGoogle Scholar
  26. Ferrario J, Byrne C, Dupuy AE Jr (1997) Background contamination by coplanar polychlorinated biphenyls (PCBs) in trace level high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) analytical procedures. Chemosphere 34:2451–2465.  https://doi.org/10.1016/S0045-6535(97)00083-0 CrossRefGoogle Scholar
  27. Fisher R, Fray T (1998) Investigation of the formation of dioxins in the sintering process. In: 2nd International Congress on the Science and Technology of Ironmaking and 57th Ironmaking Conference 1183–1193Google Scholar
  28. Formoso A, Moro A, Fernández Pello G, Menéndez J, Muniz M, Cores A (2003) Influence of nature and particle size distribution on granulation of iron ore mixtures used in a sinter strand. Ironmak Steelmak 30:447–460.  https://doi.org/10.1179/030192303225004187 CrossRefGoogle Scholar
  29. Frankenhaeuser M, Manninen H, Kojo I, Ruuskanen J, Vartiainen T, Vesterinen R, Virkki J (1993) Organic emissions from co-combustion of mixed plastics with coal in a bubbling fluidized bed boiler. Chemosphere 27:309–316.  https://doi.org/10.1016/0045-6535(93)90307-Q CrossRefGoogle Scholar
  30. Fujimori T, Takaoka M, Takeda N (2009) Influence of Cu, Fe, Pb, and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Environ Sci Technol 43:8053–8059.  https://doi.org/10.1021/es901842n CrossRefGoogle Scholar
  31. Fujimori T, Nakamura M, Takaoka M, Shiota K, Kitajima Y (2016) Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: multielement characterizations. J Hazard Mater 311:43–50.  https://doi.org/10.1016/j.jhazmat.2016.02.054 CrossRefGoogle Scholar
  32. Gallastegi-Villa M, Aranzabal A, Gonzalez-Marcos JA, Gonzalez-Velasco JR (2017) Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration. Appl Catal B-Environ 205:310–318.  https://doi.org/10.1016/j.apcatb.2016.12.020 CrossRefGoogle Scholar
  33. Ghorishi SB, Altwicker ER (1995) Formation of polychlorinated dioxins, furans, benzenes, and phenols in the post-combustion region of a heterogeneous combustor: effect of bed material and post-combustion temperature. Environ Sci Technol 29:1156–1162.  https://doi.org/10.1021/es00005a004 CrossRefGoogle Scholar
  34. Gullett BK, Ryan JV (2002) On-road emissions of PCDDs and PCDFs from heavy duty diesel vehicles. Environ Sci Technol 36:3036–3040.  https://doi.org/10.1021/es011376v CrossRefGoogle Scholar
  35. Gullett BK, Natschke DF, Bruce KR (1997) Thermal treatment of 1, 2, 3, 4-tetrachlorodibenzo-p-dioxin by reaction with Ca-based sorbents at 23–300 ° C. Environ Sci Technol 31:1855–1862.  https://doi.org/10.1021/es9604368 CrossRefGoogle Scholar
  36. Hagenmaier H, Lindig C, She J (1994) Correlation of environmental occurrence of polychlorinated dibenzo-p-dioxins and dibenzofurans with possible sources. Chemosphere 29:2163–2174.  https://doi.org/10.1016/0045-6535(94)90383-2 CrossRefGoogle Scholar
  37. Hajizadeh Y, Onwudili JA, Williams PT (2012) Effects of gaseous NH3 and SO2 on the concentration profiles of PCDD/F in flyash under post-combustion zone conditions. Waste Manage 32:1378–1386.  https://doi.org/10.1016/j.wasman.2012.02.007 CrossRefGoogle Scholar
  38. Han Y, Liu W, Hansen HCB, Chen X, Liao X, Li H, Wang M, Yan N (2016) Concentrations of and health risks posed by polychlorinated dibenzo-p-dioxins and dibenzofurans around industrial sites in Hebei Province, China. Environ Sci Pollut R 23:18742–18752.  https://doi.org/10.1007/s11356-016-7050-1 CrossRefGoogle Scholar
  39. Harrad S, Jones K (1992) A source inventory and budget for chlorinated dioxins and furans in the United Kingdom environment. Sci Total Environ 126:89–107.  https://doi.org/10.1016/0048-9697(92)90486-C CrossRefGoogle Scholar
  40. Hatanaka T, Imagawa T, Takeuchi M (2000) Formation of PCDD/Fs in artificial solid waste incineration in a laboratory-scale fluidized-bed reactor: influence of contents and forms of chlorine sources in high-temperature combustion. Environ Sci Technol 34:3920–3924.  https://doi.org/10.1021/es991258w CrossRefGoogle Scholar
  41. Hattemer-Frey HA, Travis CC (1989) Comparison of human exposure to dioxin from municipal waste incineration and background environmental contamination. Chemosphere 18:643–649.  https://doi.org/10.1016/0045-6535(89)90177-X CrossRefGoogle Scholar
  42. Hell K, Stieglitz L, Dinjus E, Segers P, Buekens A (2000) ‘De novo’ testing of dusts, collected in successive fields of an electrostatic precipitator of a sintering Plant.(I) Effect of reaction time. Organohalogen Compounds 46:447–460Google Scholar
  43. Holder AL et al (2017) Emissions from prescribed burning of agricultural fields in the Pacific Northwest. Atmos Environ 166:22–33.  https://doi.org/10.1016/j.atmosenv.2017.06.043 CrossRefGoogle Scholar
  44. Hsu WT, Liu MC, Hung PC, Chang SH, Chang MB (2016) PAH emissions from coal combustion and waste incineration. J Hazard Mater 318:32–40.  https://doi.org/10.1016/j.jhazmat.2016.06.038 CrossRefGoogle Scholar
  45. Hutson ND, Ryan SP, Touati A (2009) Assessment of PCDD/F and PBDD/F emissions from coal-fired power plants during injection of brominated activated carbon for mercury control. Atmos Environ 43:3973–3980.  https://doi.org/10.1016/j.atmosenv.2009.05.026 CrossRefGoogle Scholar
  46. Imai T, Matsui T, Fujii Y, Okita T, Nakai T (2000) Catalytic oxidation of chlorobenzene and benzene over hematite catalyst. Nippon Kagaku Kaishi 2000:541–545.  https://doi.org/10.1246/nikkashi.2000.541 CrossRefGoogle Scholar
  47. Ishikawa R, Buekens A, Huang H, Watanabe K (1997) Influence of combustion conditions on dioxin in an industrial-scale fluidized-bed incinerator: experimental study and statistical modelling. Chemosphere 35:465–477.  https://doi.org/10.1016/S0045-6535(97)00112-4 CrossRefGoogle Scholar
  48. Ismo H, Kari T, Juhani R (1997) Formation of aromatic chlorinated compounds catalyzed by copper and iron. Chemosphere 34:2649–2662.  https://doi.org/10.1016/S0045-6535(97)00109-4 CrossRefGoogle Scholar
  49. Ji SS, Li XD, Ren Y, Chen T, Cen KF, Ni MJ, Buekens A (2013) Ozone-enhanced oxidation of PCDD/Fs over V2O5-TiO2-based catalyst. Chemosphere 92:265–272.  https://doi.org/10.1016/j.chemosphere.2013.01.087 CrossRefGoogle Scholar
  50. Ji LJ et al (2016) Levels and profiles of dioxins from circulating fluidised bed incineration. Int J Environ Pollut 60:136–155.  https://doi.org/10.1504/Ijep.2016.10002960 CrossRefGoogle Scholar
  51. Ji LJ, Cao X, Lu S, du C, Li X, Chen T, Buekens A, Yan J (2018) Catalytic oxidation of PCDD/F on a V2O5-WO3/TiO2 catalyst: effect of chlorinated benzenes and chlorinated phenols. J Hazard Mater 342:220–230.  https://doi.org/10.1016/j.jhazmat.2017.07.020 CrossRefGoogle Scholar
  52. Jiménez B, Hernández L, González M (1992) PCDDs and PCDFs in fly ash from Spanish municipal solid waste incinerators. Environ Chem Lett 36:1–7.  https://doi.org/10.1080/02772249209357820 CrossRefGoogle Scholar
  53. Jin R, Zhao YY, Liu GR (2017) Comparison and relationship of polychlorinated dibenzo-p-dioxins and dibenzofuran levels between stack gas and fly ash samples from waste incinerators. Int J Environ Pollut 61:197–207.  https://doi.org/10.1504/Ijep.2017.10008691 CrossRefGoogle Scholar
  54. Kaivosoja T, Viren A, Tissari J, Ruuskanen J, Tarhanen J, Sippula O, Jokiniemi J (2012) Effects of a catalytic converter on PCDD/F, chlorophenol and PAH emissions in residential wood combustion. Chemosphere 88:278–285.  https://doi.org/10.1016/j.chemosphere.2012.02.027 CrossRefGoogle Scholar
  55. Karasek FW, Viau AC (1983) Gas chromatographic-mass spectrometric analysis of polychlorinated dibenzo-p-dioxins and organic compounds in high-temperature fly ash from municipal incineration. J Chromatogr A 265:79–88.  https://doi.org/10.1016/S0021-9673(01)96700-7 CrossRefGoogle Scholar
  56. Karasek FW, Naikwadi KP, Hutzinger O. Suppression of dioxin production in the incineration of waste material. U.S. Patent 5,113,772[P]. 1992-5-19Google Scholar
  57. Kasai E, Aono T, Tomita Y, Takasaki M, Shiraishi N, Kitano S (2001) Macroscopic behaviors of dioxins in the iron ore sintering plants. Isij Int 41:86–92.  https://doi.org/10.2355/isijinternational.41.86 CrossRefGoogle Scholar
  58. Kawaguchi T, Matsumura M, Kasai E, Ohtsuka Y, Noda H (2002) Promoter material and inhibitor material for dioxins formation in sintering process. Tetsu To Hagane 88:370–377.  https://doi.org/10.2355/tetsutohagane1955.88.7_370 CrossRefGoogle Scholar
  59. Komatsu T, Ooshima R (2009) Catalytic combustion of dioxin analogue compounds on Pt supported zeolite. J Jpn Petrol Inst 52:332–340.  https://doi.org/10.1627/jpi.52.332 CrossRefGoogle Scholar
  60. Kumar V, Mari M, Schuhmacher M, Domingo JL (2009) Partitioning total variance in risk assessment: application to a municipal solid waste incinerator. Environ Modell Softw 24:247–261.  https://doi.org/10.1016/j.envsoft.2008.06.012 CrossRefGoogle Scholar
  61. Kuusik R, Salkkonen P, Niinistö L (1985) Thermal decomposition of calcium sulphate in carbon monoxide. Journal of Thermal Analysis 30:187–193.  https://doi.org/10.1007/BF02128129 CrossRefGoogle Scholar
  62. Kuzuhara S, Kasai E (2003) Formation of PCDD/Fs during oxidation of carbonaceous materials at low temperatures. Tetsu To Hagane 89:811–818.  https://doi.org/10.2355/tetsutohagane1955.89.8_811 CrossRefGoogle Scholar
  63. Kuzuhara S, Sato H, Tsubouchi N, Ohtsuka Y, Kasai E (2005) Effect of nitrogen-containing compounds on polychlorinated dibenzo-p-dioxin/dibenzofuran formation through de novo synthesis. Environ Sci Technol 39:795–799.  https://doi.org/10.1021/es049040j CrossRefGoogle Scholar
  64. Lee JE, Jurng J (2008) Catalytic conversions of polychlorinated benzenes and dioxins with low-chlorine using V2O5/TiO2. Catal Lett 120:294–298.  https://doi.org/10.1007/s10562-007-9283-6 CrossRefGoogle Scholar
  65. Lee CC, Shih TS, Chen HL (2009) Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters. J Hazard Mater 172:1351–1356.  https://doi.org/10.1016/j.jhazmat.2009.07.148 CrossRefGoogle Scholar
  66. Lei M, Hai J, Cheng J, Gui L, Lu J, Ren MZ, Zhu F, Yang ZH (2017) Emission characteristics of toxic pollutants from an updraft fixed bed gasifier for disposing rural domestic solid waste. Environ Sci Pollut R 24:19807–19815.  https://doi.org/10.1007/s11356-017-9615-z CrossRefGoogle Scholar
  67. Li SQ, Zhang QZ (2015) Mechanistic studies on the dibenzofuran and dibenzo-p-dioxin formation reactions from o-benzyne precursor. Comput Theor Chem 1061:80–88.  https://doi.org/10.1016/j.comptc.2015.03.006 CrossRefGoogle Scholar
  68. Li XD, Zhang J, Yan JH, Chen T, Lu SY, Cen KF (2006) Effect of water on catalyzed de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. J Hazard Mater 137:57–61.  https://doi.org/10.1016/j.jhazmat.2006.01.068 CrossRefGoogle Scholar
  69. Li HW, Lee WJ, Tsai PJ, Mou JL, Chang-Chien GP, Yang KT (2008) A novel method to enhance polychlorinated dibenzo-p-dioxins and dibenzofurans removal by adding bio-solution in EAF dust treatment plant. J Hazard Mater 150:83–91.  https://doi.org/10.1016/j.jhazmat.2007.04.077 CrossRefGoogle Scholar
  70. Li SM, Tian YJ, Ding Q, Liu WB (2014) The release of persistent organic pollutants from a closed system dicofol production process. Chemosphere 94:164–168.  https://doi.org/10.1016/j.chemosphere.2013.09.090 CrossRefGoogle Scholar
  71. Li WW, Lin XQ, Yu MF, Mubeen I, Buekens A, Li XD (2016) Experimental study on PCDD/Fs adsorption onto nano-graphite. Aerosol Air Qual Res 16:3281–3289.  https://doi.org/10.4209/aaqr.2016.08.0353 CrossRefGoogle Scholar
  72. Lin YS, Chen KS, Lin YC, Hung CH, Chang-Chien GP (2008) Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator. J Hazard Mater 154:954–962.  https://doi.org/10.1016/j.jhazmat.2007.10.110 CrossRefGoogle Scholar
  73. Lippert T, Wokaun A, Lenoir D (1991) Surface reactions of brominated arenes as a model for the formation of chlorinated dibenzodioxins and-furans in incineration: inhibition by ethanolamine. Environ Sci Technol 25:1485–1489.  https://doi.org/10.1021/es00020a019 CrossRefGoogle Scholar
  74. Liu Y, Luo MF, Wei ZB, Xin Q, Ying PL, Li C (2001) Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl Catal B-Environ 29:61–67.  https://doi.org/10.1016/S0926-3373(00)00193-4 CrossRefGoogle Scholar
  75. Liu WB, Zheng MH, Zhang B, Qian Y, Ma XD, Liu WX (2005) Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide. Chemosphere 60:785–790.  https://doi.org/10.1016/j.chemosphere.2005.04.020 CrossRefGoogle Scholar
  76. Liu AY, Fu HZ, Li SY, Guo YQ (2014) Comments on “Global trends of solid waste research from 1997 to 2011 by using bibliometric analysis”. Scientometrics 98:767–774.  https://doi.org/10.1007/s11192-013-1086-5 CrossRefGoogle Scholar
  77. Lomnicki S, Dellinger B (2003) Development of supported iron oxide catalyst for destruction of PCDD/F. Environ Sci Technol 37:4254–4260.  https://doi.org/10.1021/es026363b CrossRefGoogle Scholar
  78. Lonati G, Zanoni F (2012) Probabilistic health risk assessment of carcinogenic emissions from a MSW gasification plant. Environ Int 44:80–91.  https://doi.org/10.1016/j.envint.2012.01.013 CrossRefGoogle Scholar
  79. Long HM, Shi Q, Zhang HL, Wei RF, Chun TJ, Li JX (2018) Application status and comparison of dioxin removal technologies for iron ore sintering process. J Iron Steel Res Int 25:357–365.  https://doi.org/10.1007/s42243-018-0046-y CrossRefGoogle Scholar
  80. Lu M, Wang GX, Zhang ZZ, Su YM (2012) Characterization and inventory of PCDD/F emissions from the ceramic industry in China. Environ Sci Technol 46:4159–4165.  https://doi.org/10.1021/es204639x CrossRefGoogle Scholar
  81. Lv P, Zheng MH, Liu GR, Liu WB, Xiao K (2011) Estimation and characterization of PCDD/Fs and dioxin-like PCBs from Chinese iron foundries. Chemosphere 82:759–763.  https://doi.org/10.1016/j.chemosphere.2010.10.077 CrossRefGoogle Scholar
  82. Ma HT, Du N, Lin XY, Liu CF, Zhang JY, Miao ZZ (2018) Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste. Sci Total Environ 633:1263–1271.  https://doi.org/10.1016/j.scitotenv.2018.03.282 CrossRefGoogle Scholar
  83. Marques M, Nadal M, Diaz-Ferrero J, Schuhmacher M, Domingo JL (2018) Concentrations of PCDD/Fs in the neighborhood of a hazardous waste incinerator: human health risks. Environ Sci Pollut R 25:26470–26481.  https://doi.org/10.1007/s11356-018-2685-8 CrossRefGoogle Scholar
  84. Matsumura M, Kawaguchi T, Kasai E (2006) Effects of promoting and suppressing materials on dioxin emissions in iron ore sintering process. In: Asia Steel International Conference 421Google Scholar
  85. McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration. Chem Eng J 86:343–368.  https://doi.org/10.1016/S1385-8947(01)00228-5 CrossRefGoogle Scholar
  86. Menad N, Tayibi H, Carcedo FG, Hernandez A (2006) Minimization methods for emissions generated from sinter strands: a review. J Clean Prod 14:740–747.  https://doi.org/10.1016/j.jclepro.2004.03.005 CrossRefGoogle Scholar
  87. Mercury M et al (2013) Adsorption of 2,3-DCDD on FAU and EMT-type zeolites: influence of the nature and the content of charge compensating cations. Micropor Mesopor Mat 177:25–31.  https://doi.org/10.1016/j.micromeso.2013.02.051 CrossRefGoogle Scholar
  88. Milligan MS, Altwicker E (1993) The relationship between de novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans and low-temperature carbon gasification in fly ash. Environ Sci Technol 27:1595–1601.  https://doi.org/10.1021/es00045a015 CrossRefGoogle Scholar
  89. Min Y, Liu CJ, Shi PY, Qin CD, Feng YT, Liu BC (2018) Effects of the addition of municipal solid waste incineration fly ash on the behavior of polychlorinated dibenzo-p-dioxins and furans in the iron ore sintering process. Waste Manage 77:287–293.  https://doi.org/10.1016/j.wasman.2018.04.011 CrossRefGoogle Scholar
  90. Mosca S, Torelli G, Tramontana G, Guerriero E, Rotatori M, Bianchini M (2012) Concentration of organic micropollutants in the atmosphere of Trieste, Italy. Environ Sci Pollut R 19:1927–1935.  https://doi.org/10.1007/s11356-011-0696-9 CrossRefGoogle Scholar
  91. Naikwadi K, Karasek F (1989) Prevention of PCDD formation in MSW incinerators by inhibition of catalytic activity of fly ash produced. Chemosphere 19:299–304.  https://doi.org/10.1016/0045-6535(89)90327-5
  92. Narang AS, Swami K, Narang RS, Eadon GA (1991) Pyrolysis and combustion of liquids and solids containing pentachlorophenol. Chemosphere 22:1029–1043.  https://doi.org/10.1016/0045-6535(91)90304-V CrossRefGoogle Scholar
  93. Nestrick TJ, Lamparski LL (1983) Assessment of chlorinated dibenzo-p-dioxin formation and potential emission to the environment from wood combustion. Chemosphere 12:617–626.  https://doi.org/10.1016/0045-6535(83)90219-9 CrossRefGoogle Scholar
  94. Niu S, Dong L, Zhang LF, Zhu CF, Hai R, Huang YR (2017) Temporal and spatial distribution, sources, and potential health risks of ambient polycyclic aromatic hydrocarbons in the Yangtze River Delta (YRD) of eastern China. Chemosphere 172:72–79.  https://doi.org/10.1016/j.chemosphere.2016.12.108 CrossRefGoogle Scholar
  95. Ogura I, Masunaga S, Nakanishi J (2001) Congener-specific characterization of PCDDs/PCDFs in atmospheric deposition: comparison of profiles among deposition, source, and environmental sink. Chemosphere 45:173–183.  https://doi.org/10.1016/S0045-6535(00)00584-1
  96. Olie K, Vermeulen P, Hutzinger O (1977) Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere 6:455–459.  https://doi.org/10.1016/0045-6535(77)90035-2 CrossRefGoogle Scholar
  97. Ooi TC, Lu LM (2011) Formation and mitigation of PCDD/Fs in iron ore sintering. Chemosphere 85:291–299.  https://doi.org/10.1016/j.chemosphere.2011.08.020 CrossRefGoogle Scholar
  98. Pandelova ME, Lenoir D, Kettrup A, Schramm K-W (2005) Primary measures for reduction of PCDD/F in co-combustion of lignite coal and waste: effect of various inhibitors. Environ Sci Technol 39:3345–3350.  https://doi.org/10.1021/es049796i CrossRefGoogle Scholar
  99. Parizek T, Bebar L, Stehlik P (2008) Persistent pollutants emission abatement in waste-to-energy systems. Clean Technol Envir 10:147–153.  https://doi.org/10.1007/s10098-007-0135-2 CrossRefGoogle Scholar
  100. Paukshtis EA, Simonova LG, Zagoruiko AN, Balzhinimaev BS (2010) Oxidative destruction of chlorinated hydrocarbons on Pt-containing fiber-glass catalysts. Chemosphere 79:199–204.  https://doi.org/10.1016/j.chemosphere.2010.01.050 CrossRefGoogle Scholar
  101. Pekárek V, Grabic R, Marklund S, Punčochář M, Ullrich J (2001) Effects of oxygen on formation of PCB and PCDD/F on extracted fly ash in the presence of carbon and cupric salt. Chemosphere 43:777–782.  https://doi.org/10.1016/S0045-6535(00)00433-1 CrossRefGoogle Scholar
  102. Pohlandt K, Marutzky R (1994) Concentration and distribution of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) in wood ash. Chemosphere 28:1311–1314.  https://doi.org/10.1016/0045-6535(94)90075-2 CrossRefGoogle Scholar
  103. Pütz R, Gudenau H (1996) Untersuchungsergebnisse über Möglichkeiten zur primärseitigen Dioxinminderung bei der. Eisenerzsinterung VDI BERICHTE 1298:249–268Google Scholar
  104. Qian L, Chun T, Long H, Li J, Di Z, Meng Q, Wang P (2018) Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Safety Environmental Protection 117:82–91.  https://doi.org/10.1016/j.psep.2018.04.014 CrossRefGoogle Scholar
  105. Raghunathan K, Gullett BK (1996) Role of sulfur in reducing PCDD and PCDF formation. Environ Sci Technol 30:1827–1834.  https://doi.org/10.1021/es950362k CrossRefGoogle Scholar
  106. Ruokojärvi PH, Halonen IA, Tuppurainen KA, Tarhanen J, Ruuskanen J (1998) Effect of gaseous inhibitors on PCDD/F formation. Environ Sci Technol 32:3099–3103.  https://doi.org/10.1021/es9701265 CrossRefGoogle Scholar
  107. Samaras P, Blumenstock M, Lenoir D, Schramm K-W, Kettrup A (2000) PCDD/F prevention by novel inhibitors: addition of inorganic S-and N-compounds in the fuel before combustion. Environ Sci Technol 34:5092–5096.  https://doi.org/10.1021/es0001207 CrossRefGoogle Scholar
  108. Samaras P, Blumenstock M, Lenoir D, Schramm K-W, Kettrup A (2001) PCDD/F inhibition by prior addition of urea to the solid fuel in laboratory experiments and results statistical evaluation. Chemosphere 42:737–743.  https://doi.org/10.1016/S0045-6535(00)00248-4 CrossRefGoogle Scholar
  109. Schuhmacher M, Domingo J, Llobet J, Sünderhauf W, Jager J (1998) Baseline levels of PCDD/Fs in vegetation samples collected in the vicinity of a new hazardous waste incinerator in Catalonia, Spain. Chemosphere 36:2581–2591.  https://doi.org/10.1016/S0045-6535(97)10220-X CrossRefGoogle Scholar
  110. Schwarz G, Stieglitz L (1992) Formation of organohalogen compounds in fly ash by metal-catalyzed oxidation of residual carbon. Chemosphere 25:277–282.  https://doi.org/10.1016/0045-6535(92)90543-Z CrossRefGoogle Scholar
  111. Shih TS, Lee WJ, Shih M, Chen YC, Huang SL, Wang LC, Chang-Chien GP, Tsai PJ (2008) Exposure and health-risk assessment of polychlorinated dibenzo-p-dioxins and di-benzofurans (PCDD/Fs) for sinter plant workers. Environ Int 34:102–107.  https://doi.org/10.1016/j.envint.2007.07.010 CrossRefGoogle Scholar
  112. Stanmore B (2004) The formation of dioxins in combustion systems. Combustion flame 136:398–427.  https://doi.org/10.1016/j.combustflame.2003.11.004 CrossRefGoogle Scholar
  113. Stieglitz L, Vogg H (1987) On formation conditions of PCDD/PCDF in fly ash from municipal waste incinerators. Chemosphere 16:1917–1922.  https://doi.org/10.1016/0045-6535(87)90188-3 CrossRefGoogle Scholar
  114. Stieglitz L, Eichberger M, Schleihauf J, Beck J, Zwick G, Will R (1993) The oxidative degradation of carbon and its role in the de-novo-synthesis of organohalogen compounds in fly ash. Chemosphere 27:343–350.  https://doi.org/10.1016/0045-6535(93)90311-R CrossRefGoogle Scholar
  115. Suzuki K, Kasai E, Aono T, Yamazaki H, Kawamoto K (2004) De novo formation characteristics of dioxins in the dry zone of an iron ore sintering bed. Chemosphere 54:97–104.  https://doi.org/10.1016/S0045-6535(03)00708-2 CrossRefGoogle Scholar
  116. Thompson P, Anderson D, Fisher R, Thompson D, Sharp J (2003) Process-related patterns in dioxin emissions: a simplified assessment procedure applied to coke combustion in sinter plant. Fuel 82:2125–2137.  https://doi.org/10.1016/S0016-2361(03)00183-2 CrossRefGoogle Scholar
  117. Townsend DI, Lamparski LL, Nestrick TJ (1987) Laboratory simulation and potential mechanisms explaining PCDD congener group ratio behavior on particulates from combustion sources. Chemosphere 16:1753–1757.  https://doi.org/10.1016/0045-6535(87)90163-9 CrossRefGoogle Scholar
  118. Travis CC, Hattemer-Frey HA (1991) Human exposure to dioxin. Sci Total Environ 104:97–127.  https://doi.org/10.1016/0048-9697(91)90010-C CrossRefGoogle Scholar
  119. Tseng HH, Lu CY, Chang FY, Wey MY, Cheng HT (2011) Catalytic removal of NO and PAHs over AC-supported catalysts from incineration flue gas: bench-scale and pilot-plant tests. Chem Eng J 169:135–143.  https://doi.org/10.1016/j.cej.2011.02.069 CrossRefGoogle Scholar
  120. Tuppurainen K, Halonen I, Ruokojärvi P, Tarhanen J, Ruuskanen J (1998) Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review. Chemosphere 36:1493–1511.  https://doi.org/10.1016/S0045-6535(97)10048-0 CrossRefGoogle Scholar
  121. Tuppurainen K, Aatamila M, Ruokojärvi P, Halonen I, Ruuskanen J (1999) Effect of liquid inhibitors on PCDD/F formation. Prediction of particle-phase PCDD/F concentrations using PLS modelling with gas-phase chlorophenol concentrations as independent variables. Chemosphere 38:2205–2217.  https://doi.org/10.1016/S0045-6535(98)00439-1
  122. Tuppurainen K, Asikainen A, Ruokojärvi P, Ruuskanen J (2003) Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes. Accounts of Chemical Research. 36:652–658.  https://doi.org/10.1021/ar020104+ CrossRefGoogle Scholar
  123. Valberg PA, Drivas PJ, McCarthy S, Watson AY (1996) Evaluating the health impacts of incinerator emissions. J Hazard Mater 47:205–227.  https://doi.org/10.1016/0304-3894(96)82225-4 CrossRefGoogle Scholar
  124. Van den Brink R, Mulder P, Louw R (1999) Catalytic combustion of chlorobenzene on Pt/γ-Al2O3 in the presence of aliphatic hydrocarbons. Catalysis Today 54:101–106.  https://doi.org/10.1016/S0920-5861(99)00172-8 CrossRefGoogle Scholar
  125. Wang L-C, Lee W-J, Tsai P-J, Lee W-S, Chang-Chien G-P (2003) Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere 50:1123–1129.  https://doi.org/10.1016/S0045-6535(02)00702-6 CrossRefGoogle Scholar
  126. Wang YF, Wang LC, Hsieh LT, Li HW, Jiang HC, Lin YS, Tsai CH (2012) Effect of temperature and CaO addition on the removal of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from a medical waste incinerator. Aerosol Air Qual Res 12:191–199.  https://doi.org/10.4209/aaqr.2011.06.0079 CrossRefGoogle Scholar
  127. Wang L, Lu YL, He GZ, Mol APJ, Wang TY, Gosens J, Ni K (2014) Factors influencing polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emissions and control in major industrial sectors: case evidence from Shandong Province, China. J Environ Sci-China 26:1513–1522.  https://doi.org/10.1016/j.jes.2014.05.018 CrossRefGoogle Scholar
  128. Weber R, Hagenmaier H (1999) PCDD/PCDF formation in fluidized bed incineration. Chemosphere 38:2643–2654.  https://doi.org/10.1016/S0045-6535(98)00472-X CrossRefGoogle Scholar
  129. Weber R, Sakurai T, Hagenmaier H (1999) Formation and destruction of PCDD/PCDF during heat treatment of fly ash samples from fluidized bed incinerators. Chemosphere 38:2633–2642.  https://doi.org/10.1016/S0045-6535(98)00471-8 CrossRefGoogle Scholar
  130. Wikström E, Ryan S, Touati A, Telfer M, Tabor D, Gullett BK (2003) Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ Sci Technol 37:1108–1113.  https://doi.org/10.1021/es026262d CrossRefGoogle Scholar
  131. Wu CH, Chang-Chien GP, Lee WS (2004) Photodegradation of polychlorinated dibenzo-p-dioxins: comparison of photocatalysts. J Hazard Mater 114:191–197.  https://doi.org/10.1016/j.jhazmat.2004.08.008 CrossRefGoogle Scholar
  132. Wu SL, Zhang GL, Chen SG, Su B (2014) Influencing factors and effects of assimilation characteristic of iron ores in sintering process. Isij Int 54:582–588.  https://doi.org/10.2355/isijinternational.54.582 CrossRefGoogle Scholar
  133. Xhrouet C, De Pauw E (2003) Prevention of dioxins de novo formation by ethanolamines. Environ Chem Lett 1:51–56.  https://doi.org/10.1007/s10311-002-0011-6 CrossRefGoogle Scholar
  134. Xhrouet C, De Pauw E (2004) Formation of PCDD/Fs in the sintering process: influence of the raw materials. Environ Sci Technol 38:4222–4226.  https://doi.org/10.1021/es0354679t CrossRefGoogle Scholar
  135. Xu PJ, Tao B, Zhou Z, Fan S, Zhang T, Liu A, Dong S, Yuan J, Li H, Chen J, Huang Y (2017) Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo-p-dioxin/dibenzofuran in the soils of Guiyu, China. Environ Pollut 228:61–71.  https://doi.org/10.1016/j.envpol.2017.05.024 CrossRefGoogle Scholar
  136. Xu SX, Chen T, Buekens A, Li XD (2018) De novo formation of PCDD/F during sintering: effect of temperature, granule size and oxygen content. Isij Int 58:566–572.  https://doi.org/10.2355/isijinternational.ISIJINT-2017-392 CrossRefGoogle Scholar
  137. Yang H, Li X, Yu Y, He X (2011) Review on technologies of reducing dioxin in flue gas from sintering process. World Iron Steel 1:6–11CrossRefGoogle Scholar
  138. Yang J, Yan M, Li XD, Chen T, Lu SY, Yan JH, Buekens A (2015) Influence of temperature and atmosphere on polychlorinated dibenzo-p-dioxins and dibenzofurans desorption from waste incineration fly ash. Environ Technol 36:760–766.  https://doi.org/10.1080/09593330.2014.960480 CrossRefGoogle Scholar
  139. Yu YM, Zheng MH, Li XW, He XL (2012) Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling. J Environ Sci-China 24:875–881.  https://doi.org/10.1016/S1001-0742(11)60869-3
  140. Zhan MX, Ji LJ, Ma YF, Chen WR, Lu SY (2018) The impact of hydrochloric acid on the catalytic destruction behavior of 1,2-dichlorbenzene and PCDD/Fs in the presence of VWTi catalysts. Waste Manage 78:249–257.  https://doi.org/10.1016/j.wasman.2018.05.041 CrossRefGoogle Scholar
  141. Zhang QZ, Yu WN, Zhang RX, Zhou Q, Gao R, Wang WX (2010) Quantum chemical and kinetic study on dioxin formation from the 2,4,6-TCP and 2,4-DCP precursors. Environ Sci Technol 44:3395–3403.  https://doi.org/10.1021/es1004285 CrossRefGoogle Scholar
  142. Zhang MM, Yang J, Buekens A, Olie K, Li XD (2016) PCDD/F catalysis by metal chlorides and oxides. Chemosphere 159:536–544.  https://doi.org/10.1016/j.chemosphere.2016.06.049 CrossRefGoogle Scholar
  143. Zhang MM, Buekens A, Olie K, Li XD (2017) PCDD/F-isomers signature—effect of metal chlorides and oxides. Chemosphere 184:559–568.  https://doi.org/10.1016/j.chemosphere.2017.05.176 CrossRefGoogle Scholar
  144. Zhao HB, Wang JX (2018) Chemical-looping combustion of plastic wastes for in situ inhibition of dioxins. Combust Flame 191:9–18.  https://doi.org/10.1016/j.combustflame.2017.12.026 CrossRefGoogle Scholar
  145. Zhou HC, Zhong ZP, Jin BS, Huang YH, Xiao R (2005) Experimental study on the removal of PAHs using in-duct activated carbon injection. Chemosphere 59:861–869.  https://doi.org/10.1016/j.chemosphere.2004.11.022 CrossRefGoogle Scholar
  146. Zhou Q, Yang JX, Liu MM, Liu Y, Sarnat S, Bi J (2018) Toxicological risk by inhalation exposure of air pollution emitted from China's municipal solid waste incineration. Environ Sci Technol 52:11490–11499.  https://doi.org/10.1021/acs.est.8b03352 CrossRefGoogle Scholar
  147. Zhu J, Hirai Y, Yu G, Sakai S-I (2008) Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in China and chemometric analysis of potential emission sources. Chemosphere 70:703–711.  https://doi.org/10.1016/j.chemosphere.2007.06.053 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yi Xing
    • 1
    • 2
  • Hui Zhang
    • 1
    • 2
  • Wei Su
    • 1
    • 2
    Email author
  • Qunhui Wang
    • 1
    • 2
  • Haibin Yu
    • 3
  • Jiaqing Wang
    • 1
    • 2
  • Rui Li
    • 1
    • 2
  • Changqing Cai
    • 1
    • 2
  • Zhiliang Ma
    • 1
    • 2
  1. 1.School of Energy and Environmental EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory of Resource-Oriented Treatment of Industrial PollutantsUniversity of Science and Technology BeijingBeijingChina
  3. 3.China National Environmental Monitoring CentreBeijingChina

Personalised recommendations