Advertisement

New lake in a changing world: the construction and filling of a small hydropower reservoir in the tropics (Rio de Janeiro, Brazil)

  • Christina Wyss Castelo BrancoEmail author
  • João José Fonseca Leal
  • Vera Lúcia de Moraes Huszar
  • Daniel da Silva Farias
  • Tatiana Dillenbug Saint’Pierre
  • Izidro Ferreira Sousa-Filho
  • Elisabete Fernandes de Albuquerque de Palermo
  • Alcides Wagner Serpa Guarino
  • Adalto Rodrigues Gomes
  • Betina Kozlowsky-Suzuki
Research Article
  • 66 Downloads

Abstract

Climate change has affected rainfall patterns in tropical regions, where simultaneous demands for water and energy, habitat loss, declining biodiversity, and spread of invasive species have reflected a rapidly changing world underway. In Brazil, hydropower generation accounts for 64% of the electricity matrix, which presently includes 1007 small hydropower plants (SHPs) having many others under construction or planned. This paper aimed to evaluate changes in water quality, plankton communities, and benthic macroinvertebrates during dam construction, filling, and the first year of operation of a SHP. Suspended solids, turbidity, and silica were variables that highlighted the impact of this construction on the river. Fast changes in water quality (increases in calcium, chlorides, and nitrate) and on aquatic communities (i.e. euglenophyceans and testate amoebae increased in numbers) were detected during the filling phase. Following SHP construction, the concentrations of metals and total phosphorus tended to decrease. Two striking findings observed in the aquatic communities from the riverine conditions to the new lake were the increase in picocyanobacteria abundance, expanding population stocks throughout the river basin, and the constant presence of the invasive mollusc Corbicula fluminea in the macroinvertebrate assemblage, revealing once again its resistance to environmental variability. The lake soon became a natural trap for ions from the drainage basin, as revealed by the increase in electrical conductivity, ammonium, potassium, and magnesium concentrations and the abundance of cyanobacteria, highlighting the need for watershed management to improve ecological conditions in the lake.

Keywords

Tropical reservoir Dam construction Metals Corbicula fluminea Cyanobacteria Phytoplankton Zooplankton Macroinvertebrates 

Notes

References

  1. Abbasi T, Abbasi SA (2011) Small hydro and the environmental implications of its extensive utilization. Renew Sust Energ Rev 15:2134–2143.  https://doi.org/10.1016/j.rser.2010.11.050 CrossRefGoogle Scholar
  2. Altindağ A, Yiğit S (2005) Assessment of heavy metal concentration in the food web of lake Beysehir, Turkey. Chemosphere 60:522–556.  https://doi.org/10.1016/j.chemosphere.2005.01.009 CrossRefGoogle Scholar
  3. Anderson E, Freeman M, Pringle C (2006) Ecological consequences of hydropower development in central america: impacts of small dams and water diversion on neotropical stream fish assemblages. River Res Appl 22(4):397–411.  https://doi.org/10.1002/rra.899 CrossRefGoogle Scholar
  4. Anderson D, Moggridge H, Warren P, Shucksmith J (2015) The impacts of “run-of-river” hydropower on the physical and ecological conditions of rivers. Water Environ J 29:268–276.  https://doi.org/10.1111/wej.12101 CrossRefGoogle Scholar
  5. ANEEL (Agência Nacional de Energia Elétrica) (1998) Resolução Normativa n° 394 - 04-12-1998Google Scholar
  6. ANEEL (Agência Nacional de Energia Elétrica)/ BIG (Banco de Informação de Geração) (2019) http://www.aneel.gov.br/aplicacoes/capacidadebrasil/ (accessed 9 January 2019)
  7. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington D.CGoogle Scholar
  8. Avelar WEP, Neves FF, Lavrador MAS (2014) Modelling the risk of mortality of Corbicula flumínea (Müller, 1774) (Bivalvia: Corbiculidae) exposed to different turbidity conditions. Braz J Biol 74(2):509–514.  https://doi.org/10.1590/1519-6984.21612 CrossRefGoogle Scholar
  9. Barroso HS, Becker H, Melo VMM (2016) Influence of river discharge on phytoplankton structure and nutrient concentration in four tropical semiarid estuaries. Braz J Oceanogr 64(1):37–48.  https://doi.org/10.1590/S1679-87592016101406401 CrossRefGoogle Scholar
  10. Bellinger EG, Sigee DC (2010) Freshwater Algae. Identification and use as bioindicators, 1st edn. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  11. Bonfim FF, Mantovano T, Schwind LT, Palazzo F, Bonecker CC, Lansac-Tôha FA (2016) Geographical spread of the invasive species Kellicottia longispina (Kellicott, 1879) and K. bostoniensis (Rousselet, 1908): a scientometric approach. Acta Sci Biol Sci 38(1):29–36.  https://doi.org/10.4025/actascibiolsci.v38i1.28252 CrossRefGoogle Scholar
  12. Branco CWC, Senna PAC (1996) Relations among heterotrophic bacteria, chlorophyll-a, total phytoplankton, total zooplankton and physical and chemical features in the Paranoá reservoir, Brasília, Brazil. Hydrobiologia 337:171–181CrossRefGoogle Scholar
  13. Brandimarte AL, Anaya M, Shimizu GY, Meirelles ST, Caneppele D (2008) Impact of damming the Mogi-Guaçu River Impact of damming the Mogi-Guaçu River (São Paulo State, Brazil) on reservoir limnological variables. Lakes Reserv Res Manag 13:23–35.  https://doi.org/10.1111/j.1440-1770.2007.00359.x CrossRefGoogle Scholar
  14. Brazil, 2005. National Council of the Environment. Resolution No. 357 of March 17, 2005. Provides for the classification of bodies of water and environmental guidelines, as well as the conditions and standards of discharge of effluents, and other providences. Official Diary of the Union, Brasília, 18 Mar. Available from: <http://www.mma.gov.br/port/conama/res/res05/res35705.pdf>. Access in: 22 Aug. 2019.
  15. Brucet S, Compte J, Boix D, López-Flores R, Quintana XD (2008) Feeding of nauplii, copepodites and adults of Calanipeda aquaedulcis (Calanoida) in Mediterranean salt marshes. Mar Ecol Prog Ser 355:183–191.  https://doi.org/10.3354/meps07225 CrossRefGoogle Scholar
  16. Carneiro FM, Nabout JC, Vieira LCG, Roland F, Bini LM (2014) Determinants of chlorophyll-a concentration in tropical reservoirs. Hydrobiologia 740(1):89–99.  https://doi.org/10.1007/s10750-014-1940-3 CrossRefGoogle Scholar
  17. Couto TBA, Olden JL (2018) Global proliferation of small hydropower plants – science and policy. Front Ecol Environ 16(2):91–100.  https://doi.org/10.1002/fee.1746 CrossRefGoogle Scholar
  18. Darmawi SR, Berbas SM, Imanuddin MS (2013) Renewable energy and hydropower utilization tendency worldwide. Renew Sust Energ Rev 17:213–215.  https://doi.org/10.1016/j.rser.2012.09.010 CrossRefGoogle Scholar
  19. Devercelli M, O’Farrell I (2013) Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica 43:67–78.  https://doi.org/10.1016/j.limno.2012.05.001 CrossRefGoogle Scholar
  20. Fearnside PM (2016) Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ Res Lett 11(1):011002.  https://doi.org/10.1088/1748-9326/11/1/011002 CrossRefGoogle Scholar
  21. Ferreira JHI, Camacho JR, Malagoli JA, Guimarães-Júnior SCG (2016) Assessment of the potential of small hydropower development in Brazil. Renew Sust Energ Rev 56:380–387.  https://doi.org/10.1016/j.rser.2015.11.035 CrossRefGoogle Scholar
  22. Figueiredo DM, Bianchini-Jr I (2008) Limnological patterns of the filling and stabilization phases in the Manso multiple-use reservoir. Acta Limnol Bras 20(4):277–290Google Scholar
  23. Gallo MN, Vinzon SB, Jordão MDL, Kim M, Medeiros AD (2012) Variabilidade das concentrações de sedimentos em suspensão no Rio Guandu. In: Tubbs-Filho D, Antunes JCO, Vettorazzi JS (eds) Bacia Hidrográfica dos rios Guandu, da Guarda e Guandu-Mirim: Experiências para a gestão dos recursos hídricos. Comitê Guandu, Rio de Janeiro, pp 325–339Google Scholar
  24. Han BP, Wang T, Lin QQ, Dumont HJ (2008) Carnivory and active hunting by the planktonic testate amoeba Difflugia tuberspinifera. Hydrobiologia 596:197–201.  https://doi.org/10.1007/s10750-007-9096-z CrossRefGoogle Scholar
  25. Hardoim EL, Heckman CW (1996) The seasonal succession of biotic communities in wetlands of the tropical wet-and-dry climatic zone: IV. The free-living sarcodines and ciliates of the Pantanal of Mato Grosso, Brazil. Int Rev Gesamten Hydrobiol 81:367–384CrossRefGoogle Scholar
  26. Jati S, Bortolini JC, Train S (2017) Mixotrophic species influencing phytoplankton community structuring during the filling phase of a subtropical reservoir. Braz J Bot 40(4):933–941.  https://doi.org/10.1007/s40415-017-0407-y CrossRefGoogle Scholar
  27. Jeppesen E, Brucet S, Naselli-Flores L, Papasterigiadou E, Stefanidis K, Nöges T, Attayde JL, Zohary T, Coppens J, Bucak T, Menezes RF, Freitas FRS, Kernan M, Sondergaard M, Beklioglu M (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750(1):201–227.  https://doi.org/10.1007/s10750-014-2169-x CrossRefGoogle Scholar
  28. Jesus T, Formigo N, Santos P, Tavares G (2004) Impact evaluation of the Vila Viçosa small hydroelectric power plant (Portugal) on the water quality and on the dynamics of the benthic macroinvertebrate communities of the Ardena River. Limnetica 23(3–4):241–256 https://www.limnetica.com/pt/limnetica/23 Google Scholar
  29. Kelman J (2015) Water supply to the two largest Brazilian metropolitan regions. Aquat Procedia 5:13–21.  https://doi.org/10.1016/j.aqpro.2015.10.004 CrossRefGoogle Scholar
  30. Kelman J, Pereira MV, Araripe-Neto TA, Sales PRH (2002) Hidreletricidade. In: Rebouças AC, Braga B and Tundisi JG (eds), Águas Doces no Brasil: Capital Ecológicos, Uso e Conservação. 2ª Edição, Escrituras Ed., São PauloGoogle Scholar
  31. Koralay N, Kara O, Kezik U (2018) Effects of run-of-the-river hydropower plants on the surface water quality in the Solakli stream watershed, Northeastern Turkey. Water Environ J 32:412–421.  https://doi.org/10.1111/wej.12338 CrossRefGoogle Scholar
  32. Lamparelli MC, Carvalho MC, Ribeiro de Souza RC (1998) Water and sediment quality as a response to nutrients and metals (Al, Fé and Cu) in Guarapiranga reservoir, São Paulo, Brazil. Verh Internat Verein Limnol 27:3199–3205Google Scholar
  33. Lopes VG, Branco CWC, Kozlowsky-Suzuki B, Sousa-Filho IF, Souza LC, Bini LM (2018) Environmental distances are more important than geographic distances when predicting spatial synchrony of zooplankton populations in a tropical reservoir. Freshw Biol 63(12):1592–1601.  https://doi.org/10.1111/fwb.13188 CrossRefGoogle Scholar
  34. Macedo RL, Lopes VG, Kozlowsky-Suzuki B, Branco CWC (2018) Zooplankton community attributes in an oligo-mesotrophic reservoir: a comparative study of two sampling strategies. An Acad Bras Ciênc 91(1):e20170807.  https://doi.org/10.1590/0001-3765201820170807 CrossRefGoogle Scholar
  35. Marcionilio SML, Machado KB, Carneiro FM, Ferreira ME, Carvalho P, Vieira LCG, Huszar VLM, Nabout JC (2016) Environmental factors affecting chlorophyll-a concentration in tropical floodplain lakes, Central Brazil. Environ Monit Assess 188:611–619.  https://doi.org/10.1007/s10661-016-5622-7 CrossRefGoogle Scholar
  36. Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from de PRECIS regional climate modeling system. Int J Climatol 29:2241–2255.  https://doi.org/10.1002/joc.1863 CrossRefGoogle Scholar
  37. Marengo JA, Alves LM, Soares WR, Rodriguez DA, Camargo H, Riveros MP, Pabló AD (2013) Two contrasting severe seasonal extremes in tropical South America in 2012: flood in Amazonia and drought in northeast Brazil. Amer Meteor Soc J Clim 26:9137–9154.  https://doi.org/10.1175/JCLI-D-12-00642.1 CrossRefGoogle Scholar
  38. Meyer B, Irigoien X, Graeve M, Head RN, Harris RP (2002) Feeding rates and selectivity among nauplii and adult females of Calanus finmarchicus and Calanus helgolandicus. Helgol Mar Res 56:169–176.  https://doi.org/10.1007/s10152-002-0105-3 CrossRefGoogle Scholar
  39. Miyahira IC, Carneiro JB, Gonçalves IC, Lacerda LEM, Oliveira JL, Vasconcelos MC, Santos SB (2017) Freshwater mollusks and environmental assessment of Guandu River, Rio de Janeiro, Brazil. Biota Neotrop 17(3):e20170342.  https://doi.org/10.1590/1676-0611-bn-2017-0342 CrossRefGoogle Scholar
  40. Molisani MM, Kjerfve B, Silva AP, Lacerda LD (2006) Water discharge and sediment load to Sepetiba Bay from an anthropogenically-altered drainage basin, SE Brazil. J Hydrol 3311:435–433.  https://doi.org/10.1016/j.jhydrol.2006.05.038 CrossRefGoogle Scholar
  41. Muller M (2019) Dams have the power to slow climate change. Nature 566:315–317CrossRefGoogle Scholar
  42. Pereira APS, Vasco AN, Britto FB, Júnior AVM, Garcia CAB, Nogueira SEM (2011) Estudo da diversidade da comunidade tecamebiana (Protozoa: Rhizopoda) na sub-bacia hidrográfica do Rio Poxim, SE. Sci Plena 7:1–9Google Scholar
  43. Pfeiffer WC, Fisman M, Malm O, Azcue JM (1986) Heavy metal pollution in the Paraíba do Sul River, Brazil. Sci Total Environ 58:73–79.  https://doi.org/10.1016/0048-9697(86)90077-X CrossRefGoogle Scholar
  44. Pimenta AM, Albertoni EF, Palma-Silva C (2012) Characterization of water quality in a small hydropower plant reservoir in Southern Brazil. Lake Reserv Res Manage 17:243–251.  https://doi.org/10.1111/lre.12007 CrossRefGoogle Scholar
  45. Premalatha M, Abbasi T, Abbasi SA (2014) A critical view of the eco-friendliness of small hydroeletric installations. Sci Total Environ 481:638–643.  https://doi.org/10.1016/j.scitotenv.2013.11.047 CrossRefGoogle Scholar
  46. Recknagel F, Branco CWC, Cao H, Huszar VLM, Sousa-Filho IF (2014) Modelling and forecasting the heterogeneous distribution of picocyanobacteria in the tropical Lajes Reservoir (Brazil) by evolutionary computation. Hydrobiologia 749:53–67.  https://doi.org/10.1007/s10750-014-2144-6 CrossRefGoogle Scholar
  47. Rietzler A, Fonseca AL, Lopes GP (2001) Heavy metals in tributaries of Pampulha reservoir, Minas Gerais. Braz J Biol 61(3):363–370.  https://doi.org/10.1590/S1519-9842001000300004 CrossRefGoogle Scholar
  48. Rocha MIA, Recknagel F, Minoti RT, Huszar VLM, Kozlowsky-Suzuki B, Cao H, Starling FLRM, Branco CWC (2019) Assessing the effect of abiotic variables and zooplankton on picocyanobacterial dominance in two tropical mesotrophic reservoirs by means of evolutionary computation. Water Res 149:120–129.  https://doi.org/10.1016/j.watres.2018.10.067 CrossRefGoogle Scholar
  49. Ruocco AMC, Portinho JL, Nogueira MG (2018) Potential impact of small hydroelectric power plants on river biota: a case study on macroinvertebrates associated to basaltic knickzones. Braz J Biol 78(5):1–13.  https://doi.org/10.1590/1519-6984.191148 CrossRefGoogle Scholar
  50. Sahin SK, Yildiz S (2011) Species distribution of oligochaetes related to environmental parameters in Lake Sapanca (Marmara Region, Turkey). Turk J Fish Aquat Sci 11:359–366.  https://doi.org/10.4194/1303-2712-v11_3_04 CrossRefGoogle Scholar
  51. Sampaio E, Rodil IF (2014) Effects of the invasive clam Corbicula fluminea (Müller, 1774) on a representative macrobenthic community from two estuaries at different stages of invasion. Limnetica 33(2):249–262.  https://doi.org/10.23818/limn.33.20 CrossRefGoogle Scholar
  52. Santos JM, Ferreira MT, Pinheiro AN, Bochechas JH (2006) Effects of small hydropower plants on fish ssemblages in medium-sized streams in central and northern Portugal. Aquat Conserv 16(4):373–388.  https://doi.org/10.1002/aqc.735 CrossRefGoogle Scholar
  53. Semwal N, Jangwan JS (2009) Major ion chemistry of River Bhagirathi and River Kosi in the Uttarakhand Himalaya. Int J Chem Sci 7:607–616Google Scholar
  54. Serafim-Júnior M, Lansac-Tôha FA, Lopes RM, Perbiche-Neves P (2016) Continuity effects on rotifers and microcrustaceans caused by the construction of a downstream reservoir in a cascade series (Iguaçu River, Brazil). Braz J Biol 76:279–291.  https://doi.org/10.1590/1519-6984.00314 CrossRefGoogle Scholar
  55. Suriani AL, França RS, Rocha O (2007) A malacofauna bentônica das represas do médio rio Tietê (São Paulo, Brasil) e uma avaliação ecológica das espécies exóticas invasoras, Melanoides tuberculata (Müller) e Corbicula flumínea (Müller). Rev Bras Zool 24(1):21–32.  https://doi.org/10.1590/S0101-81752007000100003 CrossRefGoogle Scholar
  56. Timm T, Všivkova TS (2007) Freshwater oligochaetes (Annelida, Clitellata) of Lake Hanka (Russia/China). Acta Hydrobiol Sin 31:25–35Google Scholar
  57. Tundisi JG, Matsumura-Tundisi T (2008) Limnologia. Oficina de Textos Ed, São PauloGoogle Scholar
  58. Utermöhl H (1958) Zur Vervollkommung der quantitative Phytoplankton – Methodik. Mitt Int Ver Limnol 9:1–38Google Scholar
  59. Valitutto RS, Sella SM, Silva-Filho EV, Pereira RG, Miekeley N (2006) Accumulation of metals in macrophytes from water reservoirs of a power supply plant, Rio de Janeiro State, Brazil. Water Air Soil Pollut 178:89–102.  https://doi.org/10.1007/s11270-006-9154-6 CrossRefGoogle Scholar
  60. Vettorazzi JS, Tubbs-Filho D, Thomé SMG (2012) Bacia hidrográfica do Rio Guandu – ação antrópica e potencial presença de protozoários de importância médica. In: Tubbs-Filho D, Antunes JCO, Vettorazzi JS (eds) Bacia Hidrográfica dos rios Guandu, da Guarda e Guandu-Mirim: Experiências para a gestão dos recursos hídricos. Comitê Guandu, Rio de Janeiro, pp 79–99Google Scholar
  61. Vieira MS, Moura MAM, Ferreira JR (2005) Estudo das variações sazonais e espaciais dos íons dominantes na água e no sedimento da Reprêsa de Ibitinga (São Paulo, Brasil). Arq Inst Biol 72(4):523–534Google Scholar
  62. Werner S, Rothhaupt KO (2007) Effects of the invasive bivalve Corbicula fluminea on settling juveniles and other benthic taxa. J N Am Benthol Soc 26(4):673–680.  https://doi.org/10.1899/07-017R.1 CrossRefGoogle Scholar
  63. Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo Y, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny MLJ, Silvano RAM, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere M Jr, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbruster J, Thieme ML, Petry P, Zuanon J, Torrente Vilara G, Snoeks J, Rainboth W, Ou C, Pavanelli CS, Akama A, van Soesbergen A, Sáenz L (2016) Balancing hydropower and biodiversity in the Amazon, Congo and Mekong. Science 351:6269.  https://doi.org/10.1126/science.aac7082 CrossRefGoogle Scholar
  64. Wu NC, Jiang WX, Fu XC, Zhou SC, Li FQ, Cai QH, Fohrer N (2010) Temporal impacts of a small hydropower plant on benthic algal community. Fundam Appl Limnol 177:257–266.  https://doi.org/10.1127/1863-9135/2010/0177-0257 CrossRefGoogle Scholar
  65. Xiaocheng F, Tao T, Wanxiang J, Fengqing L, Naicheng W, Shuchan Z, Qinghua C (2008) Impacts of small hydropower plants on macroinvertebrates communities. Acta Ecol Sin 28 (1):45-52.  https://doi.org/10.1016/S1872-2032(08)60019-0CrossRefGoogle Scholar
  66. Zhang J, Adu D, Fang Y (2017a) The potential for small hydropower plants in Ghana. Innov Energ Res 3(2):1–6Google Scholar
  67. Zhang X, Zha T, Zha Y, Qin J, Lyv Z, Ma Z, Yu H, Zhu Y, Wand G, Tettenborn F, von Lueninck BF (2017b) Sustainable effects of small hydropower substituting firewood program in Majiang County, Guizhou Province, China. Sustainability 9(6):988.  https://doi.org/10.3390/su9060988 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Christina Wyss Castelo Branco
    • 1
    Email author
  • João José Fonseca Leal
    • 2
  • Vera Lúcia de Moraes Huszar
    • 3
  • Daniel da Silva Farias
    • 1
  • Tatiana Dillenbug Saint’Pierre
    • 4
  • Izidro Ferreira Sousa-Filho
    • 1
  • Elisabete Fernandes de Albuquerque de Palermo
    • 1
  • Alcides Wagner Serpa Guarino
    • 1
  • Adalto Rodrigues Gomes
    • 5
  • Betina Kozlowsky-Suzuki
    • 1
  1. 1.Federal University of the State of Rio de JaneiroInstitute of BiosciencesRio de JaneiroBrazil
  2. 2.IFRJ—Federal Institute of Education Science and Technology of Rio de JaneiroRio de JaneiroBrazil
  3. 3.National MuseumFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Department of ChemistryPontifical Catholic University of Rio de Janeiro (PUC-Rio)Rio de JaneiroBrazil
  5. 5.PCH PARACAMBI—LIGHTGER S.A. Company—Avenida Marechal FlorianoRio de JaneiroBrazil

Personalised recommendations