Pollutant gas and particulate material emissions in ethanol production in Brazil: social and environmental impacts

  • Marcelo S. SthelEmail author
  • Georgia A. Mothé
  • Marcenilda A. Lima
  • Maria P. P. de Castro
  • Israel Esquef
  • Marcelo G. da Silva
Research Article


The replacement of fossil-based fuels by renewable fuels (biofuels) was proposed in the IPCC report, as an alternative to reduce greenhouse gas emission and reach out to a low-carbon economy. On this perspective, the Brazilian government had implemented a renewable energy program based on the use of ethanol in the transport sector. This work evaluates the scenario of pollutant gas emissions and particulate material that comes from the biomass burning process involved in ethanol production cycle, in the city of Campos dos Goytacazes, Brazil. The gases and particulate material emitted by sugarcane and bagasse burning processes—the last one in energy co-generation mills—were analyzed. A laboratory-controlled burning of both samples was realized in an oven with temperature ramp from 250 to 400 °C, at a regular rate of 50 °C. The gas samples were collected directly from the oven’s exhaust pipe. The particulates obtained were the residual material taken out of the burned samples: a powder with the aspect of soot. A photoacoustic spectroscopy system coupled with quantum cascade laser and electrochemical analyzers was used to measure the emission of polluting gases such as N2O, CO2, CO, NOx (NO, NO2), and SO2 in ppmv range. Fluorescent X-ray spectrometry was applied to evaluate the chemical composition of particulate material, enabling the identification of elements such as Si, Al, Ca, K, Fe, S, P, Ti, Mn, Cu, Zn, Sc, V, Cu, and Sr.


Ethanol Social impact Environmental policies Particulates Pollutant gas 



The authors are grateful to the Brazilian agencies of the Foundation for Research Support of the State of Rio de Janeiro (FAPERJ), National Council for Scientific and Technological Development (CNPq), Coordination of Improvement of Higher Education Personnel (CAPES) for the financial support.


  1. Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291:1–32Google Scholar
  2. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166CrossRefGoogle Scholar
  3. Alves F (2006) Por que morrem os cortadores de cana? Saude e Soc 15:90–98CrossRefGoogle Scholar
  4. de Andrade SJ, Varella SD, Pereira GT, Zocolo GJ, de Marchi MRR, Varanda EA (2011) Mutagenic activity of airborne particulate matter (PM10) in a sugarcane farming area (Araraquara city, southeast Brazil). Environ Res 111:545–550CrossRefGoogle Scholar
  5. Arbex MA, Böhm GM, Saldiva PHN, Conceição GMS, Pope AC, Braga ALF (2000) Assessment of the effects of sugar cane plantation burning on daily counts of inhalation therapy. J Air Waste Manage Assoc 50:1745–1749CrossRefGoogle Scholar
  6. Atkinson R (2000) Atmospheric chemistry of VOCs and NO(x). Atmos Environ 34:2063–2101CrossRefGoogle Scholar
  7. Baird C (2002) Enviromental chemistry. W. H. Freeman and Company.Google Scholar
  8. Bambynek W, Crasemann B, Fink RW, Freund HU, Mark H, Swift CD, Price RE, Rao PV (1972) X-ray fluorescence yields, auger, and Coster0Kronig transition probabilities. Rev Mod Phys 44:716–813CrossRefGoogle Scholar
  9. Bard AJ et al. (1980) Electrochemical methods: fundamentals and applications. New York: wiley.Google Scholar
  10. Bielecki Z, Stacewicz T, Wojtas J, Mikołajczyk J (2015) Application of quantum cascade lasers to trace gas detection. Bull Polish Acad Sci Tech Sci 63:515–525Google Scholar
  11. Bisaro A, Hinkel J (2016) Governance of social dilemmas in climate change adaptation. Nat Clim Chang 6:354–359CrossRefGoogle Scholar
  12. Le Blond JS, Williamson BJ, Horwell CJ, Monro AK, Kirk CA, Oppenheimer C (2008) Production of potentially hazardous respirable silica airborne particulate from the burning of sugarcane. Atmos Environ 42:5558–5568CrossRefGoogle Scholar
  13. Bowen JE (1969) Absorption of copper, zinc, and manganese by sugarcane leaf tissue. Plant Physiol 44(2):255–261CrossRefGoogle Scholar
  14. Brito J, Carbone S, Monteiro Dos Santos DA, Dominutti P, De Oliveira Alves N, Rizzo L, Artaxo P (2018) Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Sci Rep 8:1–10CrossRefGoogle Scholar
  15. Brühl C, Crutzen PJ (1999) Reductions in the anthropogenic emissions of CO and their effect on CH4. Chemosphere-Global Change Science 1(1-3):249–254CrossRefGoogle Scholar
  16. Cançado JED, Saldiva PHN, Pereira LAA, Lara LBLS, Artaxo P, Martinelli LA, Arbex MA, Zanobetti A, Braga ALF (2006) The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 114:725–729CrossRefGoogle Scholar
  17. De Carvalho Macedo I (1998) Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil. Biomass Bioenergy 14:77–81CrossRefGoogle Scholar
  18. Castilho S et al (2014) Role of average speed in N2O exhaust emissions as greenhouse gas in a huge urban zone. Energy Fuel 28:4028–4032CrossRefGoogle Scholar
  19. Chen T-M, Kuschner WG, Gokhale J, Shofer S (2007) Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci 333:249–256CrossRefGoogle Scholar
  20. Companhia Nacional de Abastecimento (CONAB), Aaccessed in June 13, 2019
  21. Couto FM, Sthel MS, Castro MPP, da Silva MG, Rocha MV, Tavares JR, Veiga CFM, Vargas H (2014) Quantum cascade laser photoacoustic detection of nitrous oxide released from soils for biofuel production. Appl Phys B Lasers Opt 117:897–903CrossRefGoogle Scholar
  22. Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:341–344CrossRefGoogle Scholar
  23. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395CrossRefGoogle Scholar
  24. Dallmann T, Façanha C (2018) Environmental risks of diesel passenger vehicles in Brazil. Transp, ICCT (International Counc CleanGoogle Scholar
  25. Dallmann TR, Kirchstetter TW, Demartini SJ, Harley RA (2013) Quantifying on-road emissions from gasoline-powered motor vehicles: accounting for the presence of medium- and heavy-duty diesel trucks. Environ Sci Technol 47:13873–13881CrossRefGoogle Scholar
  26. Dulce C, Amargo T, Superexploracion LA, Cañero T, Província LA, Michelle A, Tadeu F (2012) Mundo do Trabalho Cana Doce , Trabalho Amargo : a Superexploração Dotrabalhador Canavieiro No Município De Itaberaí- Go. 13:102–127Google Scholar
  27. Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O, Dyhrman ST, Berman-Frank I (2015) Impact of ocean acidification on the structure of future phytoplankton communities. Nat Clim Chang 5:1002–1006CrossRefGoogle Scholar
  28. Favory R, Lancel S, Tissier S, Mathieu D, Decoster B, Neviere R (2006) Myocardial dysfunction and potential cardiac hypoxia in rats induced by carbon monoxide inhalation. Am J Respir Crit Care Med 174:320–325CrossRefGoogle Scholar
  29. Fawcett AA et al (2015) Can Paris pledges avert severe climate change? Reducing risks of severe outcomes and improving chances of limiting warming to 2 °C. Science (80- ) 350:1168–1169CrossRefGoogle Scholar
  30. de Figueiredo EB, Panosso AR, Romão R, La Scala Jr N (2010) Greenhouse gas emission associated with sugar production in southern Brazil. Carbon Balance Manag 5:7CrossRefGoogle Scholar
  31. de França D, A, Longo KM, TGS N, Santos JC, Freitas SR, Rudorff BFT, Cortez EV, Anselmo E, Carvalho JA (2012) Pre-harvest sugarcane burning: determination of emission factors through laboratory measurements. Atmosphere (Basel) 3:164–180CrossRefGoogle Scholar
  32. Gao L, Zhang M, Han Z (2009) Model analysis of seasonal variations in tropospheric ozone and carbon monoxide over East Asia. Adv Atmos Sci 26:312–318CrossRefGoogle Scholar
  33. Gilardoni S, Massoli P, Paglione M, Giulianelli L, Carbone C, Rinaldi M, Decesari S, Sandrini S, Costabile F, Gobbi GP, Pietrogrande MC, Visentin M, Scotto F, Fuzzi S, Facchini MC (2016) Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proc Natl Acad Sci 113:10013–10018CrossRefGoogle Scholar
  34. FAO (2007) Organisation for Economic Co-operation and Development Food and Agriculture Organization of United Nations - OCDE FAO.Google Scholar
  35. Godoi RHM, Godoi AFL, Worobiec A, Andrade SJ, De Hoog J, Santiago-Silva MR, Van Grieken R (2004) Characterisation of sugar cane combustion particles in the Araraquara region, southeast Brazil. Microchim Acta 145:53–56CrossRefGoogle Scholar
  36. Gold DR, Mittleman MA (2013) New insights into pollution and the cardiovascular system: 2010 to 2012. Circulation 127:1903–1913CrossRefGoogle Scholar
  37. Hansen J, Sato M, Kharecha P, Beerling D, Berner R, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231CrossRefGoogle Scholar
  38. Hansen J, Sato M, Kharecha P, Von Schuckmann K, David J, Cao J, Marcott S, Masson-delmotte V, Prather MJ, Rohling EJ, Shakun J, Smith P (2016) Young people’s burden : requirement of negative CO2 emissions. Earth Syst Dyn 8:577–616CrossRefGoogle Scholar
  39. Hao WM, Scharffe D, Lob JM, Crutzen PJ (1991) Emissions of N2O from the burning of biomass in an experimental system. Geophys Res Lett 18(6):999–1002CrossRefGoogle Scholar
  40. Hasegawa T, Fujimori S, Takahashi K, Yokohata T, Masui T (2016) Economic implications of climate change impacts on human health through undernourishment. Clim Chang 136:189–202CrossRefGoogle Scholar
  41. Hesterberg TW, Bunn WB, McClellan RO, Hamade AK, Long CM, Valberg PA (2009) Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels. Crit Rev Toxicol 39:743–781CrossRefGoogle Scholar
  42. Hulme M (2016) after the Paris Agreement. Nat Clim Chang 6:222–224CrossRefGoogle Scholar
  43. IBGE, Brazilian Institute of Statistics Geography (2017). Disponible:
  44. INDC (2017) Intended Nationally Determined Contribution Towards Achieving the Objective of the United Nations Framework Convention on Climate Change.Google Scholar
  45. IPCC (2013) Fifth Assessment Report Climate Change: The Physical Science Basis. Stockholm, Sweden SeptemberGoogle Scholar
  46. Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14:422–430CrossRefGoogle Scholar
  47. Janata J, Josowicz M (2002) Conducting polymers in electronic chemical sensors. Nat Mater 2:19–24CrossRefGoogle Scholar
  48. Jenkins R (1995) Quantitative X-ray spectrometry. CRC Press New YorKGoogle Scholar
  49. Korten I, Ramsey K, Latzin P (2017) Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev 21:38–46Google Scholar
  50. Landrigan PJ, Fuller R, Acosta NJR et al (2017) The Lancet Commission on pollution and health. Lancet 391:1–51Google Scholar
  51. Lara LL, Artaxo P, Martinelli LA, Camargo PB, Victoria RL, Ferraz ESB (2005) Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil. Atmos Environ 39:4627–4637CrossRefGoogle Scholar
  52. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371CrossRefGoogle Scholar
  53. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87CrossRefGoogle Scholar
  54. Lima JP, Vargas H, Miklós A, Angelmahr M, Hess P (2006) Photoacoustic detection of NO2 and N2O using quantum cascade lasers. Appl Phys B Lasers Opt 85:279–284CrossRefGoogle Scholar
  55. Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste Manage Assoc 51:809–847CrossRefGoogle Scholar
  56. Macedo IC, Seabra JEA, Silva EAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil : the 2005 / 2006 averages and a prediction for 2020. Biomass Bioenergy 32:582–595CrossRefGoogle Scholar
  57. Maher BA, Ahmed IAM, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DMA, Torres-Jardón R, Calderon-Garciduenas L (2016) Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci 113:10797–10801CrossRefGoogle Scholar
  58. McGonigle AJS, Thomson CL, Tsanev VI, Oppenheimer C (2004) A simple technique power station SO2 and NO2 emissions. Atmos Environ 38:21–25CrossRefGoogle Scholar
  59. MME (2018) Ministério de Minas e Energia. Disponible: Google Scholar
  60. Nova cana (2015) A cana-de-açúcar como fonte de energia elétrica. Disponible: Google Scholar
  61. Overview of the human health and environmental effects of power generation: focus on sulfur dioxide (SO2), nitrogen oxides (NOx) and mercury (Hg) (2002)Google Scholar
  62. Pacific Northwest National Laboratory (2016)Google Scholar
  63. Paula RB e (2007) Projeto e Avaliação Teorica e Experimental de Sistemas de Geração de Eletricidade a Partir da Biomassa Utilizando Motores Stirling. Universidade Federal de ItajubáGoogle Scholar
  64. Platt SM, El Haddad I, Pieber SM et al (2014) Two-stroke scooters are a dominant source of air pollution in many cities. Nat Commun 5:3749–3756CrossRefGoogle Scholar
  65. Protocolo Agroambiental do Setor Sucraenergético (2017)Google Scholar
  66. Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Chang 2:410–416CrossRefGoogle Scholar
  67. Reyes-Reyes A, Hou Z, van Mastrigt E, Horsten RC, de Jongste JC, Pijnenburg MW, Urbach HP, Bhattacharya N (2014) Multicomponent gas analysis using broadband quantum cascade laser spectroscopy. Opt Express 22:18299–18309CrossRefGoogle Scholar
  68. Ribeiro H (2008) Sugar cane burning in Brazil: respiratory health effects. Rev Saude Publica 42:370–376CrossRefGoogle Scholar
  69. Rocha AM, Sthel MS, De Castro MPP, Mothé GA, Silva WC, Perez VH, Da Silva MG, Miklós A, Vargas H (2014) Evaluation of nitrous oxide emitted from diesel/biodiesel blends during combustion in a diesel engine at laboratory scale by a photoacoustic spectroscopy technique. Energy Fuel 28:4028–4032CrossRefGoogle Scholar
  70. Romasanta RR, Sander BO, Gaihre YK et al (2017) How does burning of rice straw affect CH4 and N2O emissions? A comparative experiment of different on-field straw management practices. Agric Ecosyst Environ 239:143–153CrossRefGoogle Scholar
  71. Rosa LA, Navarro VL (2014) Trabalho e trabalhadores dos canaviais: perfil dos cortadores de cana da região de Ribeirão Preto (SP). Cad psicol soc trab 17:143–160CrossRefGoogle Scholar
  72. Saiki M, Santos JO, Alves ER, Genezini FA, Marcelli MP, Saldiva PHN (2014) Correlation study of air pollution and cardio-respiratory diseases through NAA of an atmospheric pollutant biomonitor. J Radioanal Nucl Chem 299:773–779CrossRefGoogle Scholar
  73. Salicio MA, Mana VAM, Fett WCR, Gomes LT, Botelho C (2016) Variáveis ambientais e níveis de monóxido de carbono exalado e carboxihemoglobina em idosos praticantes de exercício. Cien Saude Colet 21:1023–1032CrossRefGoogle Scholar
  74. Samaniego L, Thober S, Kumar R, Wanders N, Rakovec O, Pan M, Zink M, Sheffield J, Wood EF, Marx A (2018) Anthropogenic warming exacerbates European soil moisture droughts. Nat Clim Chang 8:421–426CrossRefGoogle Scholar
  75. Sánchez-ccoyllo OR, Droprinchinski L, Ynoue RY, Andrade MDF (2007) The impact on tropospheric ozone formation on the implementation of a program for mobile emissions control : a case study in São Paulo , Brazil. Environ Fluid Mech 7:95–119CrossRefGoogle Scholar
  76. Satyendra T, Singh RN, Shaishav S (2013) Emissions from crop/biomass residue burning risk to atmospheric quality. Int Res J Earth Sci 1:24–30Google Scholar
  77. Schuttel M (2013) Bagaço de cana como fonte alternativa de energia.Google Scholar
  78. Seddon AWR, Macias-fauria M, Long PR, Benz D, Willis KJ (2016) Sensitivity of global terrestrial ecosystems to climate variability. Nature 531:229–232CrossRefGoogle Scholar
  79. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics—from air pollution to climate change. Wiley-Interscience Malden, MA, USAGoogle Scholar
  80. Silva, et al. (2015) Elemental composition of PM2. 5 in Araraquara City (Southest Brazil) during seasons with and without sugar cane burning. 6:426–434Google Scholar
  81. Silva FS, Cristale J, André PA, Saldiva PHN, Marchi MRR (2010) PM2.5and PM10: The influence of sugarcane burning on potential cancer risk. Atmos Environ 44:5133–5138CrossRefGoogle Scholar
  82. Silva RA, West JJ, Lamarque JF et al (2017) Future global mortality from changes in air pollution attributable to climate change. Nat Clim Chang 7:647–651CrossRefGoogle Scholar
  83. Smith P et al (2016) Biophysical and economic limits to negative CO2emissions. Nat Clim Chang 6:42–50CrossRefGoogle Scholar
  84. Stanek LW, Sacks JD, Dutton SJ, Dubois JJB (2011) Attributing health effects to apportioned components and sources of particulate matter: an evaluation of collective results. Atmos Environ 45:5655–5663CrossRefGoogle Scholar
  85. Suarez-Bertoa R, Mendoza-Villafuerte P, Bonnel P, Lilova V, Hill L, Perujo A, Astorga C (2016) On-road measurement of NH3and N2O emissions from a Euro V heavy-duty vehicle. Atmos Environ 139:167–175CrossRefGoogle Scholar
  86. Swain DL, Langenbrunner B, Neelin JD, Hall A (2018) Increasing precipitation volatility in twenty-first-century California. Nat Clim Chang 8:427–433CrossRefGoogle Scholar
  87. Tian H et al (2016) The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531:225–228CrossRefGoogle Scholar
  88. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science (80- ) 314:1598–1600CrossRefGoogle Scholar
  89. Tollefson J (2016) Brazil ratification pushes Paris climate deal one step closer.Google Scholar
  90. Torquato S, Ramos R (2012) Protocolo agroambiental do setor sucroalcooleiro paulista: ações visando à preservação ambiental. Análises e Indicadores do Agronegócio, São PauloGoogle Scholar
  91. Townsend CL, Maynard RL (2002) Effects on health of prolonged exposure to low concentrations of carbon monoxide. Occup Environ Med 59:708–711CrossRefGoogle Scholar
  92. Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Chang 6:6–11Google Scholar
  93. Tsao CC, Campbell JE, Mena-Carrasco M, Spak SN, Carmichael GR, Chen Y (2012) Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol. Nat Clim Chang 2:53–57CrossRefGoogle Scholar
  94. Union of the Sugar Cane Industry (UNICA) (2018). Disponible:
  95. Veras MM, Guimarães-Silva RM, Caldini EG, P.H.N. S, Dolhnikoff MMMT (2012) Effects of particulate ambient air pollution on the murine umbilical cord and its vessels: a quantitative morphological and immunohistochemical study. Reprod Toxicol 34:598–606CrossRefGoogle Scholar
  96. Wang H-J (2018) On assessing haze attribution and control measures in China. Atmos Ocean Sci Lett 11:120–122CrossRefGoogle Scholar
  97. Wolff GT, Korsog PE (1992) Ozone control strategies based on the ratio of volatile organic compounds to nitrogen oxides. J Air Waste Manage Assoc 42:1173–1177CrossRefGoogle Scholar
  98. Xu J, Jin T, Miao Y, Han B, Gao J, Bai Z, Xu X (2015) Individual and population intake fractions of diesel particulate matter (DPM) in bus stop microenvironments. Environ Pollut 207:161–167CrossRefGoogle Scholar
  99. Zaparoli D. Papel do Bagaço e Palha. Revista Pesquisa Papesp, 263, 2018, Accessed in June 13, 2019
  100. Zhang X, Chen X, Zhang X (2018) The impact of exposure to air pollution on cognitive performance. PNAS:1–5CrossRefGoogle Scholar
  101. Zhiqing X, Yin D, Yan Z, Yachun L, Mingliang Y, Shengming J (2009) Effects of precipitation variation on severe acid rain in southern China. J Geogr Sci 19:489–501CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marcelo S. Sthel
    • 1
    Email author
  • Georgia A. Mothé
    • 2
  • Marcenilda A. Lima
    • 1
  • Maria P. P. de Castro
    • 1
  • Israel Esquef
    • 1
  • Marcelo G. da Silva
    • 1
  1. 1.Laboratory of Physical Sciences, Center for Science and TechnologyNorth Fluminense State UniversityCampos dos GoytacazesBrazil
  2. 2.Chemistry and Technology LaboratoryHigher Institutes of Education CENSA—ISECENSACampos dos GoytacazesBrazil

Personalised recommendations